Results of Elliptic Integrals I: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 11: Line 11:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/19.2.E2 19.2.E2] || [[Item:Q6083|<math>r(s,t) = \frac{(p_{1}+p_{2}s)(p_{3}-p_{4}s)s}{(p_{3}+p_{4}s)(p_{3}-p_{4}s)s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>r(s,t) = \frac{(p_{1}+p_{2}s)(p_{3}-p_{4}s)s}{(p_{3}+p_{4}s)(p_{3}-p_{4}s)s}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r(s , t) = ((p[1]+ p[2]*s)*(p[3]- p[4]*s)*s)/((p[3]+ p[4]*s)*(p[3]- p[4]*s)*s)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r[s , t] == Divide[(Subscript[p, 1]+ Subscript[p, 2]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)*s,(Subscript[p, 3]+ Subscript[p, 4]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)*s]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/19.2.E2 19.2.E2] || [[Item:Q6083|<math>r(s,t) = \frac{(p_{1}+p_{2}s)(p_{3}-p_{4}s)s}{(p_{3}+p_{4}s)(p_{3}-p_{4}s)s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>r(s,t) = \frac{(p_{1}+p_{2}s)(p_{3}-p_{4}s)s}{(p_{3}+p_{4}s)(p_{3}-p_{4}s)s}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r(s , t) = ((p[1]+ p[2]*s)*(p[3]- p[4]*s)*s)/((p[3]+ p[4]*s)*(p[3]- p[4]*s)*s)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">r[s , t] == Divide[(Subscript[p, 1]+ Subscript[p, 2]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)*s,(Subscript[p, 3]+ Subscript[p, 4]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)*s]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
Line 863: Line 862:
| [https://dlmf.nist.gov/19.20.E2 19.20.E2] || [[Item:Q6376|<math>\int_{0}^{1}\frac{\diff{t}}{\sqrt{1-t^{4}}} = \CarlsonsymellintRF@{0}{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{\diff{t}}{\sqrt{1-t^{4}}} = \CarlsonsymellintRF@{0}{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(sqrt(1 - (t)^(4))), t = 0..1) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/19.20.E2 19.20.E2] || [[Item:Q6376|<math>\int_{0}^{1}\frac{\diff{t}}{\sqrt{1-t^{4}}} = \CarlsonsymellintRF@{0}{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{\diff{t}}{\sqrt{1-t^{4}}} = \CarlsonsymellintRF@{0}{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(sqrt(1 - (t)^(4))), t = 0..1) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/19.20.E2 19.20.E2] || [[Item:Q6376|<math>\CarlsonsymellintRF@{0}{1}{2} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{1}{2} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) = ((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] == Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/2)]</syntaxhighlight> || Successful || Failure || Skip - symbolical successful subtest || Successful [Tested: 1]
| [https://dlmf.nist.gov/19.20.E2 19.20.E2] || [[Item:Q6376|<math>\CarlsonsymellintRF@{0}{1}{2} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{1}{2} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) = ((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] == Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/2)]</syntaxhighlight> || Successful || Failure || Skip - symbolical successful subtest || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/19.20.E2 19.20.E2] || [[Item:Q6376|<math>\frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}} = 1.31102\;87771\;46059\;90523\;\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}} = 1.31102\;87771\;46059\;90523\;\dots</syntaxhighlight> || <math>\realpart@@{(\frac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/2)) = 1.31102877714605990523</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/2)] == 1.31102877714605990523</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/19.20.E2 19.20.E2] || [[Item:Q6376|<math>\frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}} = 1.31102\;87771\;46059\;90523\;\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}} = 1.31102\;87771\;46059\;90523\;\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/2)) = 1.31102877714605990523</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/2)] == 1.31102877714605990523</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/19.20#Ex6 19.20#Ex6] || [[Item:Q6378|<math>\CarlsonsymellintRG@{x}{x}{x} = x^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRG@{x}{x}{x} = x^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[x-x]*(EllipticE[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+(Cot[ArcCos[Sqrt[x/x]]])^2*EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+Cot[ArcCos[Sqrt[x/x]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x]]]^2]) == (x)^(1/2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.20#Ex6 19.20#Ex6] || [[Item:Q6378|<math>\CarlsonsymellintRG@{x}{x}{x} = x^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRG@{x}{x}{x} = x^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[x-x]*(EllipticE[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+(Cot[ArcCos[Sqrt[x/x]]])^2*EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+Cot[ArcCos[Sqrt[x/x]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x]]]^2]) == (x)^(1/2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Line 991: Line 990:
| [https://dlmf.nist.gov/19.20.E22 19.20.E22] || [[Item:Q6413|<math>\int_{0}^{1}\frac{t^{2}\diff{t}}{\sqrt{1-t^{4}}} = \tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{t^{2}\diff{t}}{\sqrt{1-t^{4}}} = \tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2))</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 1]
| [https://dlmf.nist.gov/19.20.E22 19.20.E22] || [[Item:Q6413|<math>\int_{0}^{1}\frac{t^{2}\diff{t}}{\sqrt{1-t^{4}}} = \tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{t^{2}\diff{t}}{\sqrt{1-t^{4}}} = \tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2))</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/19.20.E22 19.20.E22] || [[Item:Q6413|<math>\tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1} = \frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1} = \frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}}</syntaxhighlight> || <math>\realpart@@{(\frac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2)) == Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/2)]</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 1]
| [https://dlmf.nist.gov/19.20.E22 19.20.E22] || [[Item:Q6413|<math>\tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1} = \frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1} = \frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2)) == Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/2)]</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/19.20.E22 19.20.E22] || [[Item:Q6413|<math>\frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}} = 0.59907\;01173\;67796\;10371\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}} = 0.59907\;01173\;67796\;10371\dots</syntaxhighlight> || <math>\realpart@@{(\frac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>((GAMMA((3)/(4)))^(2))/((2*Pi)^(1/2)) = 0.59907011736779610371</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/2)] == 0.59907011736779610371</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/19.20.E22 19.20.E22] || [[Item:Q6413|<math>\frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}} = 0.59907\;01173\;67796\;10371\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}} = 0.59907\;01173\;67796\;10371\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((GAMMA((3)/(4)))^(2))/((2*Pi)^(1/2)) = 0.59907011736779610371</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/2)] == 0.59907011736779610371</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/19.21.E1 19.21.E1] || [[Item:Q6419|<math>\CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]/Sqrt[z-0]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)])/((1-z + 1)*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)])/((z-z + 1)*(z-0)^(1/2))*EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]/Sqrt[1-0] == 3*Pi/(2*z)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-18.895019118218656, -13.266297761785948]
| [https://dlmf.nist.gov/19.21.E1 19.21.E1] || [[Item:Q6419|<math>\CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]/Sqrt[z-0]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)])/((1-z + 1)*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)])/((z-z + 1)*(z-0)^(1/2))*EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]/Sqrt[1-0] == 3*Pi/(2*z)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-18.895019118218656, -13.266297761785948]

Latest revision as of 07:11, 25 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.2.E2 r ( s , t ) = ( p 1 + p 2 s ) ( p 3 - p 4 s ) s ( p 3 + p 4 s ) ( p 3 - p 4 s ) s 𝑟 𝑠 𝑡 subscript 𝑝 1 subscript 𝑝 2 𝑠 subscript 𝑝 3 subscript 𝑝 4 𝑠 𝑠 subscript 𝑝 3 subscript 𝑝 4 𝑠 subscript 𝑝 3 subscript 𝑝 4 𝑠 𝑠 {\displaystyle{\displaystyle r(s,t)=\frac{(p_{1}+p_{2}s)(p_{3}-p_{4}s)s}{(p_{3% }+p_{4}s)(p_{3}-p_{4}s)s}}}
r(s,t) = \frac{(p_{1}+p_{2}s)(p_{3}-p_{4}s)s}{(p_{3}+p_{4}s)(p_{3}-p_{4}s)s}

r(s , t) = ((p[1]+ p[2]*s)*(p[3]- p[4]*s)*s)/((p[3]+ p[4]*s)*(p[3]- p[4]*s)*s)
r[s , t] == Divide[(Subscript[p, 1]+ Subscript[p, 2]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)*s,(Subscript[p, 3]+ Subscript[p, 4]*s)*(Subscript[p, 3]- Subscript[p, 4]*s)*s]
Skipped - no semantic math Skipped - no semantic math - -
19.2.E4 F ( ϕ , k ) = 0 ϕ d θ 1 - k 2 sin 2 θ elliptic-integral-first-kind-F italic-ϕ 𝑘 superscript subscript 0 italic-ϕ 𝜃 1 superscript 𝑘 2 2 𝜃 {\displaystyle{\displaystyle F\left(\phi,k\right)=\int_{0}^{\phi}\frac{\mathrm% {d}\theta}{\sqrt{1-k^{2}{\sin^{2}}\theta}}}}
\incellintFk@{\phi}{k} = \int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}}

EllipticF(sin(phi), k) = int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi)
EllipticF[\[Phi], (k)^2] == Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None]
Failure Aborted
Failed [6 / 30]
Result: Float(infinity)
Test Values: {phi = -2, k = 1}

Result: .2e-9-.5175477340*I
Test Values: {phi = -2, k = 2}

... skip entries to safe data
Skipped - Because timed out
19.2.E4 0 ϕ d θ 1 - k 2 sin 2 θ = 0 sin ϕ d t 1 - t 2 1 - k 2 t 2 superscript subscript 0 italic-ϕ 𝜃 1 superscript 𝑘 2 2 𝜃 superscript subscript 0 italic-ϕ 𝑡 1 superscript 𝑡 2 1 superscript 𝑘 2 superscript 𝑡 2 {\displaystyle{\displaystyle\int_{0}^{\phi}\frac{\mathrm{d}\theta}{\sqrt{1-k^{% 2}{\sin^{2}}\theta}}=\int_{0}^{\sin\phi}\frac{\mathrm{d}t}{\sqrt{1-t^{2}}\sqrt% {1-k^{2}t^{2}}}}}
\int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}} = \int_{0}^{\sin@@{\phi}}\frac{\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}}

int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi) = int((1)/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))), t = 0..sin(phi))
Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[1,Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None]
Failure Aborted
Failed [6 / 30]
Result: Float(-infinity)
Test Values: {phi = -2, k = 1}

Result: -.2e-9+.5175477340*I
Test Values: {phi = -2, k = 2}

... skip entries to safe data
Skipped - Because timed out
19.2.E5 E ( ϕ , k ) = 0 ϕ 1 - k 2 sin 2 θ d θ elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript subscript 0 italic-ϕ 1 superscript 𝑘 2 2 𝜃 𝜃 {\displaystyle{\displaystyle E\left(\phi,k\right)=\int_{0}^{\phi}\sqrt{1-k^{2}% {\sin^{2}}\theta}\mathrm{d}\theta\\ }}
\incellintEk@{\phi}{k} = \int_{0}^{\phi}\sqrt{1-k^{2}\sin^{2}@@{\theta}}\diff{\theta}\\

EllipticE(sin(phi), k) = int(sqrt(1 - (k)^(2)* (sin(theta))^(2)), theta = 0..phi)
EllipticE[\[Phi], (k)^2] == Integrate[Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)], {\[Theta], 0, \[Phi]}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E5 0 ϕ 1 - k 2 sin 2 θ d θ = 0 sin ϕ 1 - k 2 t 2 1 - t 2 d t superscript subscript 0 italic-ϕ 1 superscript 𝑘 2 2 𝜃 𝜃 superscript subscript 0 italic-ϕ 1 superscript 𝑘 2 superscript 𝑡 2 1 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\int_{0}^{\phi}\sqrt{1-k^{2}{\sin^{2}}\theta}% \mathrm{d}\theta\\ =\int_{0}^{\sin\phi}\frac{\sqrt{1-k^{2}t^{2}}}{\sqrt{1-t^{2}}}\mathrm{d}t}}
\int_{0}^{\phi}\sqrt{1-k^{2}\sin^{2}@@{\theta}}\diff{\theta}\\ = \int_{0}^{\sin@@{\phi}}\frac{\sqrt{1-k^{2}t^{2}}}{\sqrt{1-t^{2}}}\diff{t}

int(sqrt(1 - (k)^(2)* (sin(theta))^(2)), theta = 0..phi) = int((sqrt(1 - (k)^(2)* (t)^(2)))/(sqrt(1 - (t)^(2))), t = 0..sin(phi))
Integrate[Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[Sqrt[1 - (k)^(2)* (t)^(2)],Sqrt[1 - (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E6 D ( ϕ , k ) = 0 ϕ sin 2 θ d θ 1 - k 2 sin 2 θ elliptic-integral-third-kind-D italic-ϕ 𝑘 superscript subscript 0 italic-ϕ 2 𝜃 𝜃 1 superscript 𝑘 2 2 𝜃 {\displaystyle{\displaystyle D\left(\phi,k\right)=\int_{0}^{\phi}\frac{{\sin^{% 2}}\theta\mathrm{d}\theta}{\sqrt{1-k^{2}{\sin^{2}}\theta}}}}
\incellintDk@{\phi}{k} = \int_{0}^{\phi}\frac{\sin^{2}@@{\theta}\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}}

(EllipticF(sin(phi), k) - EllipticE(sin(phi), k))/(k)^2 = int(((sin(theta))^(2))/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi)
Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4] == Integrate[Divide[(Sin[\[Theta]])^(2),Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E6 0 ϕ sin 2 θ d θ 1 - k 2 sin 2 θ = 0 sin ϕ t 2 d t 1 - t 2 1 - k 2 t 2 superscript subscript 0 italic-ϕ 2 𝜃 𝜃 1 superscript 𝑘 2 2 𝜃 superscript subscript 0 italic-ϕ superscript 𝑡 2 𝑡 1 superscript 𝑡 2 1 superscript 𝑘 2 superscript 𝑡 2 {\displaystyle{\displaystyle\int_{0}^{\phi}\frac{{\sin^{2}}\theta\mathrm{d}% \theta}{\sqrt{1-k^{2}{\sin^{2}}\theta}}=\int_{0}^{\sin\phi}\frac{t^{2}\mathrm{% d}t}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}}}}
\int_{0}^{\phi}\frac{\sin^{2}@@{\theta}\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}} = \int_{0}^{\sin@@{\phi}}\frac{t^{2}\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}}

int(((sin(theta))^(2))/(sqrt(1 - (k)^(2)* (sin(theta))^(2))), theta = 0..phi) = int(((t)^(2))/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))), t = 0..sin(phi))
Integrate[Divide[(Sin[\[Theta]])^(2),Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E6 0 sin ϕ t 2 d t 1 - t 2 1 - k 2 t 2 = ( F ( ϕ , k ) - E ( ϕ , k ) ) / k 2 superscript subscript 0 italic-ϕ superscript 𝑡 2 𝑡 1 superscript 𝑡 2 1 superscript 𝑘 2 superscript 𝑡 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle\int_{0}^{\sin\phi}\frac{t^{2}\mathrm{d}t}{\sqrt{1% -t^{2}}\sqrt{1-k^{2}t^{2}}}=(F\left(\phi,k\right)-E\left(\phi,k\right))/k^{2}}}
\int_{0}^{\sin@@{\phi}}\frac{t^{2}\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}} = (\incellintFk@{\phi}{k}-\incellintEk@{\phi}{k})/k^{2}

int(((t)^(2))/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))), t = 0..sin(phi)) = (EllipticF(sin(phi), k)- EllipticE(sin(phi), k))/(k)^(2)
Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]], {t, 0, Sin[\[Phi]]}, GenerateConditions->None] == (EllipticF[\[Phi], (k)^2]- EllipticE[\[Phi], (k)^2])/(k)^(2)
Failure Aborted Successful [Tested: 0] Skipped - Because timed out
19.2.E7 Π ( ϕ , α 2 , k ) = 0 ϕ d θ 1 - k 2 sin 2 θ ( 1 - α 2 sin 2 θ ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 superscript subscript 0 italic-ϕ 𝜃 1 superscript 𝑘 2 2 𝜃 1 superscript 𝛼 2 2 𝜃 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},k\right)=\int_{0}^{\phi}% \frac{\mathrm{d}\theta}{\sqrt{1-k^{2}{\sin^{2}}\theta}(1-\alpha^{2}{\sin^{2}}% \theta)}}}
\incellintPik@{\phi}{\alpha^{2}}{k} = \int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}(1-\alpha^{2}\sin^{2}@@{\theta})}

EllipticPi(sin(phi), (alpha)^(2), k) = int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))*(1 - (alpha)^(2)* (sin(theta))^(2))), theta = 0..phi)
EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]*(1 - \[Alpha]^(2)* (Sin[\[Theta]])^(2))], {\[Theta], 0, \[Phi]}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.2.E7 0 ϕ d θ 1 - k 2 sin 2 θ ( 1 - α 2 sin 2 θ ) = 0 sin ϕ d t 1 - t 2 1 - k 2 t 2 ( 1 - α 2 t 2 ) superscript subscript 0 italic-ϕ 𝜃 1 superscript 𝑘 2 2 𝜃 1 superscript 𝛼 2 2 𝜃 superscript subscript 0 italic-ϕ 𝑡 1 superscript 𝑡 2 1 superscript 𝑘 2 superscript 𝑡 2 1 superscript 𝛼 2 superscript 𝑡 2 {\displaystyle{\displaystyle\int_{0}^{\phi}\frac{\mathrm{d}\theta}{\sqrt{1-k^{% 2}{\sin^{2}}\theta}(1-\alpha^{2}{\sin^{2}}\theta)}=\int_{0}^{\sin\phi}\frac{% \mathrm{d}t}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}(1-\alpha^{2}t^{2})}}}
\int_{0}^{\phi}\frac{\diff{\theta}}{\sqrt{1-k^{2}\sin^{2}@@{\theta}}(1-\alpha^{2}\sin^{2}@@{\theta})} = \int_{0}^{\sin@@{\phi}}\frac{\diff{t}}{\sqrt{1-t^{2}}\sqrt{1-k^{2}t^{2}}(1-\alpha^{2}t^{2})}

int((1)/(sqrt(1 - (k)^(2)* (sin(theta))^(2))*(1 - (alpha)^(2)* (sin(theta))^(2))), theta = 0..phi) = int((1)/(sqrt(1 - (t)^(2))*sqrt(1 - (k)^(2)* (t)^(2))*(1 - (alpha)^(2)* (t)^(2))), t = 0..sin(phi))
Integrate[Divide[1,Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]*(1 - \[Alpha]^(2)* (Sin[\[Theta]])^(2))], {\[Theta], 0, \[Phi]}, GenerateConditions->None] == Integrate[Divide[1,Sqrt[1 - (t)^(2)]*Sqrt[1 - (k)^(2)* (t)^(2)]*(1 - \[Alpha]^(2)* (t)^(2))], {t, 0, Sin[\[Phi]]}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.2#Ex1 K ( k ) = F ( π / 2 , k ) complete-elliptic-integral-first-kind-K 𝑘 elliptic-integral-first-kind-F 𝜋 2 𝑘 {\displaystyle{\displaystyle K\left(k\right)=F\left(\pi/2,k\right)}}
\compellintKk@{k} = \incellintFk@{\pi/2}{k}

EllipticK(k) = EllipticF(sin(Pi/2), k)
EllipticK[(k)^2] == EllipticF[Pi/2, (k)^2]
Successful Successful - Successful [Tested: 3]
19.2#Ex2 E ( k ) = E ( π / 2 , k ) complete-elliptic-integral-second-kind-E 𝑘 elliptic-integral-second-kind-E 𝜋 2 𝑘 {\displaystyle{\displaystyle E\left(k\right)=E\left(\pi/2,k\right)}}
\compellintEk@{k} = \incellintEk@{\pi/2}{k}

EllipticE(k) = EllipticE(sin(Pi/2), k)
EllipticE[(k)^2] == EllipticE[Pi/2, (k)^2]
Successful Successful - Successful [Tested: 3]
19.2#Ex3 D ( k ) = D ( π / 2 , k ) complete-elliptic-integral-D 𝑘 elliptic-integral-third-kind-D 𝜋 2 𝑘 {\displaystyle{\displaystyle D\left(k\right)=D\left(\pi/2,k\right)}}
\compellintDk@{k} = \incellintDk@{\pi/2}{k}

(EllipticK(k) - EllipticE(k))/(k)^2 = (EllipticF(sin(Pi/2), k) - EllipticE(sin(Pi/2), k))/(k)^2
Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[EllipticF[Pi/2, (k)^2] - EllipticE[Pi/2, (k)^2], (k)^4]
Successful Successful - Successful [Tested: 3]
19.2#Ex3 D ( π / 2 , k ) = ( K ( k ) - E ( k ) ) / k 2 elliptic-integral-third-kind-D 𝜋 2 𝑘 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript 𝑘 2 {\displaystyle{\displaystyle D\left(\pi/2,k\right)=(K\left(k\right)-E\left(k% \right))/k^{2}}}
\incellintDk@{\pi/2}{k} = (\compellintKk@{k}-\compellintEk@{k})/k^{2}

(EllipticF(sin(Pi/2), k) - EllipticE(sin(Pi/2), k))/(k)^2 = (EllipticK(k)- EllipticE(k))/(k)^(2)
Divide[EllipticF[Pi/2, (k)^2] - EllipticE[Pi/2, (k)^2], (k)^4] == (EllipticK[(k)^2]- EllipticE[(k)^2])/(k)^(2)
Successful Failure -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-0.08185805455243832, 0.4541460103381725]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.2#Ex4 Π ( α 2 , k ) = Π ( π / 2 , α 2 , k ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 elliptic-integral-third-kind-Pi 𝜋 2 superscript 𝛼 2 𝑘 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)=\Pi\left(\pi/2,\alpha% ^{2},k\right)}}
\compellintPik@{\alpha^{2}}{k} = \incellintPik@{\pi/2}{\alpha^{2}}{k}

EllipticPi((alpha)^(2), k) = EllipticPi(sin(Pi/2), (alpha)^(2), k)
EllipticPi[\[Alpha]^(2), (k)^2] == EllipticPi[\[Alpha]^(2), Pi/2,(k)^2]
Successful Successful - Successful [Tested: 9]
19.2#Ex5 K ( k ) = K ( k ) complementary-complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle{K^{\prime}}\left(k\right)=K\left(k^{\prime}\right% )}}
\ccompellintKk@{k} = \compellintKk@{k^{\prime}}

EllipticCK(k) = EllipticK(sqrt(1 - (k)^(2)))
EllipticK[1-(k)^2] == EllipticK[(Sqrt[1 - (k)^(2)])^2]
Successful Successful - Successful [Tested: 3]
19.2#Ex6 E ( k ) = E ( k ) complementary-complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-second-kind-E superscript 𝑘 {\displaystyle{\displaystyle{E^{\prime}}\left(k\right)=E\left(k^{\prime}\right% )}}
\ccompellintEk@{k} = \compellintEk@{k^{\prime}}

EllipticCE(k) = EllipticE(sqrt(1 - (k)^(2)))
EllipticE[1-(k)^2] == EllipticE[(Sqrt[1 - (k)^(2)])^2]
Successful Successful - Successful [Tested: 3]
19.2#Ex7 k = 1 - k 2 superscript 𝑘 1 superscript 𝑘 2 {\displaystyle{\displaystyle k^{\prime}=\sqrt{1-k^{2}}}}
k^{\prime} = \sqrt{1-k^{2}}

sqrt(1 - (k)^(2)) = sqrt(1 - (k)^(2))
Sqrt[1 - (k)^(2)] == Sqrt[1 - (k)^(2)]
Successful Successful - Successful [Tested: 3]
19.2#Ex8 F ( m π + ϕ , k ) = 2 m K ( k ) + F ( ϕ , k ) elliptic-integral-first-kind-F 𝑚 𝜋 italic-ϕ 𝑘 2 𝑚 complete-elliptic-integral-first-kind-K 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(m\pi+\phi,k\right)=2mK\left(k\right)+F% \left(\phi,k\right)}}
\incellintFk@{m\pi+\phi}{k} = 2m\compellintKk@{k}+\incellintFk@{\phi}{k}

EllipticF(sin(m*Pi + phi), k) = 2*m*EllipticK(k)+ EllipticF(sin(phi), k)
EllipticF[m*Pi + \[Phi], (k)^2] == 2*m*EllipticK[(k)^2]+ EllipticF[\[Phi], (k)^2]
Failure Failure Error
Failed [30 / 90]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.2#Ex8 F ( m π - ϕ , k ) = 2 m K ( k ) - F ( ϕ , k ) elliptic-integral-first-kind-F 𝑚 𝜋 italic-ϕ 𝑘 2 𝑚 complete-elliptic-integral-first-kind-K 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(m\pi-\phi,k\right)=2mK\left(k\right)-F% \left(\phi,k\right)}}
\incellintFk@{m\pi-\phi}{k} = 2m\compellintKk@{k}-\incellintFk@{\phi}{k}

EllipticF(sin(m*Pi - phi), k) = 2*m*EllipticK(k)- EllipticF(sin(phi), k)
EllipticF[m*Pi - \[Phi], (k)^2] == 2*m*EllipticK[(k)^2]- EllipticF[\[Phi], (k)^2]
Failure Failure Error
Failed [30 / 90]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.2#Ex9 E ( m π + ϕ , k ) = 2 m E ( k ) + E ( ϕ , k ) elliptic-integral-second-kind-E 𝑚 𝜋 italic-ϕ 𝑘 2 𝑚 complete-elliptic-integral-second-kind-E 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 {\displaystyle{\displaystyle E\left(m\pi+\phi,k\right)=2mE\left(k\right)+E% \left(\phi,k\right)}}
\incellintEk@{m\pi+\phi}{k} = 2m\compellintEk@{k}+\incellintEk@{\phi}{k}

EllipticE(sin(m*Pi + phi), k) = 2*m*EllipticE(k)+ EllipticE(sin(phi), k)
EllipticE[m*Pi + \[Phi], (k)^2] == 2*m*EllipticE[(k)^2]+ EllipticE[\[Phi], (k)^2]
Failure Failure
Failed [90 / 90]
Result: -3.717960670-.6751929261*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 1}

Result: -4.000000000-.3e-9*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 2}

... skip entries to safe data
Successful [Tested: 90]
19.2#Ex9 E ( m π - ϕ , k ) = 2 m E ( k ) - E ( ϕ , k ) elliptic-integral-second-kind-E 𝑚 𝜋 italic-ϕ 𝑘 2 𝑚 complete-elliptic-integral-second-kind-E 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 {\displaystyle{\displaystyle E\left(m\pi-\phi,k\right)=2mE\left(k\right)-E% \left(\phi,k\right)}}
\incellintEk@{m\pi-\phi}{k} = 2m\compellintEk@{k}-\incellintEk@{\phi}{k}

EllipticE(sin(m*Pi - phi), k) = 2*m*EllipticE(k)- EllipticE(sin(phi), k)
EllipticE[m*Pi - \[Phi], (k)^2] == 2*m*EllipticE[(k)^2]- EllipticE[\[Phi], (k)^2]
Failure Failure
Failed [90 / 90]
Result: -.2820393315+.6751929264*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 1}

Result: -4.000000000-.4e-9*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1, m = 2}

... skip entries to safe data
Successful [Tested: 90]
19.2#Ex10 D ( m π + ϕ , k ) = 2 m D ( k ) + D ( ϕ , k ) elliptic-integral-third-kind-D 𝑚 𝜋 italic-ϕ 𝑘 2 𝑚 complete-elliptic-integral-D 𝑘 elliptic-integral-third-kind-D italic-ϕ 𝑘 {\displaystyle{\displaystyle D\left(m\pi+\phi,k\right)=2mD\left(k\right)+D% \left(\phi,k\right)}}
\incellintDk@{m\pi+\phi}{k} = 2m\compellintDk@{k}+\incellintDk@{\phi}{k}

(EllipticF(sin(m*Pi + phi), k) - EllipticE(sin(m*Pi + phi), k))/(k)^2 = 2*m*(EllipticK(k) - EllipticE(k))/(k)^2 + (EllipticF(sin(phi), k) - EllipticE(sin(phi), k))/(k)^2
Divide[EllipticF[m*Pi + \[Phi], (k)^2] - EllipticE[m*Pi + \[Phi], (k)^2], (k)^4] == 2*m*Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4]+ Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4]
Failure Failure Error
Failed [30 / 90]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.2#Ex10 D ( m π - ϕ , k ) = 2 m D ( k ) - D ( ϕ , k ) elliptic-integral-third-kind-D 𝑚 𝜋 italic-ϕ 𝑘 2 𝑚 complete-elliptic-integral-D 𝑘 elliptic-integral-third-kind-D italic-ϕ 𝑘 {\displaystyle{\displaystyle D\left(m\pi-\phi,k\right)=2mD\left(k\right)-D% \left(\phi,k\right)}}
\incellintDk@{m\pi-\phi}{k} = 2m\compellintDk@{k}-\incellintDk@{\phi}{k}

(EllipticF(sin(m*Pi - phi), k) - EllipticE(sin(m*Pi - phi), k))/(k)^2 = 2*m*(EllipticK(k) - EllipticE(k))/(k)^2 - (EllipticF(sin(phi), k) - EllipticE(sin(phi), k))/(k)^2
Divide[EllipticF[m*Pi - \[Phi], (k)^2] - EllipticE[m*Pi - \[Phi], (k)^2], (k)^4] == 2*m*Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4]- Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4]
Failure Failure Error
Failed [30 / 90]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[k, 1], Rule[m, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.2.E16 0 arctan x d θ ( cos 2 θ + p sin 2 θ ) cos 2 θ + k c 2 sin 2 θ = Π ( arctan x , 1 - p , k ) superscript subscript 0 𝑥 𝜃 2 𝜃 𝑝 2 𝜃 2 𝜃 superscript subscript 𝑘 𝑐 2 2 𝜃 elliptic-integral-third-kind-Pi 𝑥 1 𝑝 𝑘 {\displaystyle{\displaystyle\int_{0}^{\operatorname{arctan}x}\frac{\mathrm{d}% \theta}{({\cos^{2}}\theta+p{\sin^{2}}\theta)\sqrt{{\cos^{2}}\theta+k_{c}^{2}{% \sin^{2}}\theta}}=\Pi\left(\operatorname{arctan}x,1-p,k\right)}}
\int_{0}^{\atan@@{x}}\frac{\diff{\theta}}{(\cos^{2}@@{\theta}+p\sin^{2}@@{\theta})\sqrt{\cos^{2}@@{\theta}+k_{c}^{2}\sin^{2}@@{\theta}}} = \incellintPik@{\atan@@{x}}{1-p}{k}
x 2 - 1 / p superscript 𝑥 2 1 𝑝 {\displaystyle{\displaystyle x^{2}\neq-1/p}}
int((1)/(((cos(theta))^(2)+ p*(sin(theta))^(2))*sqrt((cos(theta))^(2)+ (k[c])^(2)*(sin(theta))^(2))), theta = 0..arctan(x)) = EllipticPi(sin(arctan(x)), 1 - p, k)
Integrate[Divide[1,((Cos[\[Theta]])^(2)+ p*(Sin[\[Theta]])^(2))*Sqrt[(Cos[\[Theta]])^(2)+ (Subscript[k, c])^(2)*(Sin[\[Theta]])^(2)]], {\[Theta], 0, ArcTan[x]}, GenerateConditions->None] == EllipticPi[1 - p, ArcTan[x],(k)^2]
Error Aborted - Skipped - Because timed out
19.2.E17 R C ( x , y ) = 1 2 0 d t t + x ( t + y ) Carlson-integral-RC 𝑥 𝑦 1 2 superscript subscript 0 𝑡 𝑡 𝑥 𝑡 𝑦 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=\frac{1}{2}\int_{0}^{\infty% }\frac{\mathrm{d}t}{\sqrt{t+x}(t+y)}}}
\CarlsonellintRC@{x}{y} = \frac{1}{2}\int_{0}^{\infty}\frac{\diff{t}}{\sqrt{t+x}(t+y)}

Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[1,2]*Integrate[Divide[1,Sqrt[t + x]*(t + y)], {t, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [12 / 18]
Result: Complex[-1.0177225554447185, 0.0]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.2.E18 R C ( x , y ) = 1 y - x arctan y - x x Carlson-integral-RC 𝑥 𝑦 1 𝑦 𝑥 𝑦 𝑥 𝑥 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=\frac{1}{\sqrt{y-x}}% \operatorname{arctan}\sqrt{\frac{y-x}{x}}}}
\CarlsonellintRC@{x}{y} = \frac{1}{\sqrt{y-x}}\atan@@{\sqrt{\frac{y-x}{x}}}
0 x , x < y formulae-sequence 0 𝑥 𝑥 𝑦 {\displaystyle{\displaystyle 0\leq x,x<y}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[1,Sqrt[y - x]]*ArcTan[Sqrt[Divide[y - x,x]]]
Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 3]
19.2.E18 1 y - x arctan y - x x = 1 y - x arccos x / y 1 𝑦 𝑥 𝑦 𝑥 𝑥 1 𝑦 𝑥 𝑥 𝑦 {\displaystyle{\displaystyle\frac{1}{\sqrt{y-x}}\operatorname{arctan}\sqrt{% \frac{y-x}{x}}=\frac{1}{\sqrt{y-x}}\operatorname{arccos}\sqrt{x/y}}}
\frac{1}{\sqrt{y-x}}\atan@@{\sqrt{\frac{y-x}{x}}} = \frac{1}{\sqrt{y-x}}\acos@@{\sqrt{x/y}}
0 x , x < y formulae-sequence 0 𝑥 𝑥 𝑦 {\displaystyle{\displaystyle 0\leq x,x<y}}
(1)/(sqrt(y - x))*arctan(sqrt((y - x)/(x))) = (1)/(sqrt(y - x))*arccos(sqrt(x/y))
Divide[1,Sqrt[y - x]]*ArcTan[Sqrt[Divide[y - x,x]]] == Divide[1,Sqrt[y - x]]*ArcCos[Sqrt[x/y]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.2.E19 R C ( x , y ) = 1 x - y arctanh x - y x Carlson-integral-RC 𝑥 𝑦 1 𝑥 𝑦 hyperbolic-inverse-tangent 𝑥 𝑦 𝑥 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=\frac{1}{\sqrt{x-y}}% \operatorname{arctanh}\sqrt{\frac{x-y}{x}}}}
\CarlsonellintRC@{x}{y} = \frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x-y}{x}}}
0 < y , y < x formulae-sequence 0 𝑦 𝑦 𝑥 {\displaystyle{\displaystyle 0<y,y<x}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x - y,x]]]
Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 3]
19.2.E19 1 x - y arctanh x - y x = 1 x - y ln x + x - y y 1 𝑥 𝑦 hyperbolic-inverse-tangent 𝑥 𝑦 𝑥 1 𝑥 𝑦 𝑥 𝑥 𝑦 𝑦 {\displaystyle{\displaystyle\frac{1}{\sqrt{x-y}}\operatorname{arctanh}\sqrt{% \frac{x-y}{x}}=\frac{1}{\sqrt{x-y}}\ln\frac{\sqrt{x}+\sqrt{x-y}}{\sqrt{y}}}}
\frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x-y}{x}}} = \frac{1}{\sqrt{x-y}}\ln@@{\frac{\sqrt{x}+\sqrt{x-y}}{\sqrt{y}}}
0 < y , y < x formulae-sequence 0 𝑦 𝑦 𝑥 {\displaystyle{\displaystyle 0<y,y<x}}
(1)/(sqrt(x - y))*arctanh(sqrt((x - y)/(x))) = (1)/(sqrt(x - y))*ln((sqrt(x)+sqrt(x - y))/(sqrt(y)))
Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x - y,x]]] == Divide[1,Sqrt[x - y]]*Log[Divide[Sqrt[x]+Sqrt[x - y],Sqrt[y]]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.2.E20 R C ( x , y ) = x x - y R C ( x - y , - y ) Carlson-integral-RC 𝑥 𝑦 𝑥 𝑥 𝑦 Carlson-integral-RC 𝑥 𝑦 𝑦 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=\sqrt{\frac{x}{x-y}}R_{C}% \left(x-y,-y\right)}}
\CarlsonellintRC@{x}{y} = \sqrt{\frac{x}{x-y}}\CarlsonellintRC@{x-y}{-y}
y < 0 , 0 x formulae-sequence 𝑦 0 0 𝑥 {\displaystyle{\displaystyle y<0,0\leq x}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Sqrt[Divide[x,x - y]]*1/Sqrt[- y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x - y)/(- y)]
Missing Macro Error Failure Skip - symbolical successful subtest
Failed [9 / 9]
Result: Complex[-1.0177225554447187, -0.906899682117109]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-1.862459718905424, -1.1107207345395915]
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.2.E20 x x - y R C ( x - y , - y ) = 1 x - y arctanh x x - y 𝑥 𝑥 𝑦 Carlson-integral-RC 𝑥 𝑦 𝑦 1 𝑥 𝑦 hyperbolic-inverse-tangent 𝑥 𝑥 𝑦 {\displaystyle{\displaystyle\sqrt{\frac{x}{x-y}}R_{C}\left(x-y,-y\right)=\frac% {1}{\sqrt{x-y}}\operatorname{arctanh}\sqrt{\frac{x}{x-y}}}}
\sqrt{\frac{x}{x-y}}\CarlsonellintRC@{x-y}{-y} = \frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x}{x-y}}}
y < 0 , 0 x formulae-sequence 𝑦 0 0 𝑥 {\displaystyle{\displaystyle y<0,0\leq x}}
Error
Sqrt[Divide[x,x - y]]*1/Sqrt[- y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x - y)/(- y)] == Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x,x - y]]]
Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 9]
19.2.E20 1 x - y arctanh x x - y = 1 x - y ln x + x - y - y 1 𝑥 𝑦 hyperbolic-inverse-tangent 𝑥 𝑥 𝑦 1 𝑥 𝑦 𝑥 𝑥 𝑦 𝑦 {\displaystyle{\displaystyle\frac{1}{\sqrt{x-y}}\operatorname{arctanh}\sqrt{% \frac{x}{x-y}}=\frac{1}{\sqrt{x-y}}\ln\frac{\sqrt{x}+\sqrt{x-y}}{\sqrt{-y}}}}
\frac{1}{\sqrt{x-y}}\atanh@@{\sqrt{\frac{x}{x-y}}} = \frac{1}{\sqrt{x-y}}\ln@@{\frac{\sqrt{x}+\sqrt{x-y}}{\sqrt{-y}}}
y < 0 , 0 x formulae-sequence 𝑦 0 0 𝑥 {\displaystyle{\displaystyle y<0,0\leq x}}
(1)/(sqrt(x - y))*arctanh(sqrt((x)/(x - y))) = (1)/(sqrt(x - y))*ln((sqrt(x)+sqrt(x - y))/(sqrt(- y)))
Divide[1,Sqrt[x - y]]*ArcTanh[Sqrt[Divide[x,x - y]]] == Divide[1,Sqrt[x - y]]*Log[Divide[Sqrt[x]+Sqrt[x - y],Sqrt[- y]]]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
19.2.E21 R C ( x , y ) = 0 1 ( v 2 x + ( 1 - v 2 ) y ) - 1 / 2 d v Carlson-integral-RC 𝑥 𝑦 superscript subscript 0 1 superscript superscript 𝑣 2 𝑥 1 superscript 𝑣 2 𝑦 1 2 𝑣 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=\int_{0}^{1}(v^{2}x+(1-v^{2% })y)^{-1/2}\mathrm{d}v}}
\CarlsonellintRC@{x}{y} = \int_{0}^{1}(v^{2}x+(1-v^{2})y)^{-1/2}\diff{v}

Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Integrate[((v)^(2)* x +(1 - (v)^(2))*y)^(- 1/2), {v, 0, 1}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.2.E22 R C ( x , y ) = 2 π 0 π / 2 R C ( y , x cos 2 θ + y sin 2 θ ) d θ Carlson-integral-RC 𝑥 𝑦 2 𝜋 superscript subscript 0 𝜋 2 Carlson-integral-RC 𝑦 𝑥 2 𝜃 𝑦 2 𝜃 𝜃 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=\frac{2}{\pi}\int_{0}^{\pi/% 2}R_{C}\left(y,x{\cos^{2}}\theta+y{\sin^{2}}\theta\right)\mathrm{d}\theta}}
\CarlsonellintRC@{x}{y} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{x\cos^{2}@@{\theta}+y\sin^{2}@@{\theta}}\diff{\theta}

Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == Divide[2,Pi]*Integrate[1/Sqrt[x*(Cos[\[Theta]])^(2)+ y*(Sin[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/(x*(Cos[\[Theta]])^(2)+ y*(Sin[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.4#Ex1 d K ( k ) d k = E ( k ) - k 2 K ( k ) k k 2 derivative complete-elliptic-integral-first-kind-K 𝑘 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 𝑘 superscript superscript 𝑘 2 {\displaystyle{\displaystyle\frac{\mathrm{d}K\left(k\right)}{\mathrm{d}k}=% \frac{E\left(k\right)-{k^{\prime}}^{2}K\left(k\right)}{k{k^{\prime}}^{2}}}}
\deriv{\compellintKk@{k}}{k} = \frac{\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k}}{k{k^{\prime}}^{2}}

diff(EllipticK(k), k) = (EllipticE(k)-1 - (k)^(2)*EllipticK(k))/(k*1 - (k)^(2))
D[EllipticK[(k)^2], k] == Divide[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2],k*1 - (k)^(2)]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.4717549813624253, 3.1435959698369205]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.4#Ex2 d ( E ( k ) - k 2 K ( k ) ) d k = k K ( k ) derivative complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 𝑘 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle\frac{\mathrm{d}(E\left(k\right)-{k^{\prime}}^{2}K% \left(k\right))}{\mathrm{d}k}=kK\left(k\right)}}
\deriv{(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k})}{k} = k\compellintKk@{k}

diff(EllipticE(k)-1 - (k)^(2)*EllipticK(k), k) = k*EllipticK(k)
D[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2], k] == k*EllipticK[(k)^2]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-3.3189229307917216, 6.419990143492479]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.4#Ex3 d E ( k ) d k = E ( k ) - K ( k ) k derivative complete-elliptic-integral-second-kind-E 𝑘 𝑘 complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-first-kind-K 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\mathrm{d}E\left(k\right)}{\mathrm{d}k}=% \frac{E\left(k\right)-K\left(k\right)}{k}}}
\deriv{\compellintEk@{k}}{k} = \frac{\compellintEk@{k}-\compellintKk@{k}}{k}

diff(EllipticE(k), k) = (EllipticE(k)- EllipticK(k))/(k)
D[EllipticE[(k)^2], k] == Divide[EllipticE[(k)^2]- EllipticK[(k)^2],k]
Successful Successful - Successful [Tested: 3]
19.4#Ex4 d ( E ( k ) - K ( k ) ) d k = - k E ( k ) k 2 derivative complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-first-kind-K 𝑘 𝑘 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 {\displaystyle{\displaystyle\frac{\mathrm{d}(E\left(k\right)-K\left(k\right))}% {\mathrm{d}k}=-\frac{kE\left(k\right)}{{k^{\prime}}^{2}}}}
\deriv{(\compellintEk@{k}-\compellintKk@{k})}{k} = -\frac{k\compellintEk@{k}}{{k^{\prime}}^{2}}

diff(EllipticE(k)- EllipticK(k), k) = -(k*EllipticE(k))/(1 - (k)^(2))
D[EllipticE[(k)^2]- EllipticK[(k)^2], k] == -Divide[k*EllipticE[(k)^2],1 - (k)^(2)]
Successful Successful -
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.4.E3 d 2 E ( k ) d k 2 = - 1 k d K ( k ) d k derivative complete-elliptic-integral-second-kind-E 𝑘 𝑘 2 1 𝑘 derivative complete-elliptic-integral-first-kind-K 𝑘 𝑘 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}E\left(k\right)}{{\mathrm{d}% k}^{2}}=-\frac{1}{k}\frac{\mathrm{d}K\left(k\right)}{\mathrm{d}k}}}
\deriv[2]{\compellintEk@{k}}{k} = -\frac{1}{k}\deriv{\compellintKk@{k}}{k}

diff(EllipticE(k), [k$(2)]) = -(1)/(k)*diff(EllipticK(k), k)
D[EllipticE[(k)^2], {k, 2}] == -Divide[1,k]*D[EllipticK[(k)^2], k]
Successful Successful -
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.4.E3 - 1 k d K ( k ) d k = k 2 K ( k ) - E ( k ) k 2 k 2 1 𝑘 derivative complete-elliptic-integral-first-kind-K 𝑘 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript 𝑘 2 superscript superscript 𝑘 2 {\displaystyle{\displaystyle-\frac{1}{k}\frac{\mathrm{d}K\left(k\right)}{% \mathrm{d}k}=\frac{{k^{\prime}}^{2}K\left(k\right)-E\left(k\right)}{k^{2}{k^{% \prime}}^{2}}}}
-\frac{1}{k}\deriv{\compellintKk@{k}}{k} = \frac{{k^{\prime}}^{2}\compellintKk@{k}-\compellintEk@{k}}{k^{2}{k^{\prime}}^{2}}

-(1)/(k)*diff(EllipticK(k), k) = (1 - (k)^(2)*EllipticK(k)- EllipticE(k))/((k)^(2)*1 - (k)^(2))
-Divide[1,k]*D[EllipticK[(k)^2], k] == Divide[1 - (k)^(2)*EllipticK[(k)^2]- EllipticE[(k)^2],(k)^(2)*1 - (k)^(2)]
Error Failure -
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: DirectedInfinity[]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.4.E4 Π ( α 2 , k ) k = k k 2 ( k 2 - α 2 ) ( E ( k ) - k 2 Π ( α 2 , k ) ) partial-derivative complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 𝑘 𝑘 superscript superscript 𝑘 2 superscript 𝑘 2 superscript 𝛼 2 complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 {\displaystyle{\displaystyle\frac{\partial\Pi\left(\alpha^{2},k\right)}{% \partial k}=\frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}(E\left(k\right)-{k^{% \prime}}^{2}\Pi\left(\alpha^{2},k\right))}}
\pderiv{\compellintPik@{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintPik@{\alpha^{2}}{k})

diff(EllipticPi((alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(k)-1 - (k)^(2)*EllipticPi((alpha)^(2), k))
D[EllipticPi[\[Alpha]^(2), (k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[(k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), (k)^2])
Failure Failure Error
Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5]}

Result: Complex[0.38994760629924174, 1.2322724929931343]
Test Values: {Rule[k, 2], Rule[α, 1.5]}

... skip entries to safe data
19.4.E5 F ( ϕ , k ) k = E ( ϕ , k ) - k 2 F ( ϕ , k ) k k 2 - k sin ϕ cos ϕ k 2 1 - k 2 sin 2 ϕ partial-derivative elliptic-integral-first-kind-F italic-ϕ 𝑘 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript superscript 𝑘 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 𝑘 superscript superscript 𝑘 2 𝑘 italic-ϕ italic-ϕ superscript superscript 𝑘 2 1 superscript 𝑘 2 2 italic-ϕ {\displaystyle{\displaystyle\frac{\partial F\left(\phi,k\right)}{\partial k}={% \frac{E\left(\phi,k\right)-{k^{\prime}}^{2}F\left(\phi,k\right)}{k{k^{\prime}}% ^{2}}-\frac{k\sin\phi\cos\phi}{{k^{\prime}}^{2}\sqrt{1-k^{2}{\sin^{2}}\phi}}}}}
\pderiv{\incellintFk@{\phi}{k}}{k} = {\frac{\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintFk@{\phi}{k}}{k{k^{\prime}}^{2}}-\frac{k\sin@@{\phi}\cos@@{\phi}}{{k^{\prime}}^{2}\sqrt{1-k^{2}\sin^{2}@@{\phi}}}}

diff(EllipticF(sin(phi), k), k) = (EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticF(sin(phi), k))/(k*1 - (k)^(2))-(k*sin(phi)*cos(phi))/(1 - (k)^(2)*sqrt(1 - (k)^(2)* (sin(phi))^(2)))
D[EllipticF[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticF[\[Phi], (k)^2],k*1 - (k)^(2)]-Divide[k*Sin[\[Phi]]*Cos[\[Phi]],1 - (k)^(2)*Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]]
Failure Failure
Failed [30 / 30]
Result: Float(infinity)+Float(infinity)*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -1.296981010-1.781988683*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [30 / 30]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.2927667883728842, -0.7915995039632082]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.4.E6 E ( ϕ , k ) k = E ( ϕ , k ) - F ( ϕ , k ) k partial-derivative elliptic-integral-second-kind-E italic-ϕ 𝑘 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\partial E\left(\phi,k\right)}{\partial k}=% \frac{E\left(\phi,k\right)-F\left(\phi,k\right)}{k}}}
\pderiv{\incellintEk@{\phi}{k}}{k} = \frac{\incellintEk@{\phi}{k}-\incellintFk@{\phi}{k}}{k}

diff(EllipticE(sin(phi), k), k) = (EllipticE(sin(phi), k)- EllipticF(sin(phi), k))/(k)
D[EllipticE[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]- EllipticF[\[Phi], (k)^2],k]
Successful Successful - Successful [Tested: 30]
19.4.E7 Π ( ϕ , α 2 , k ) k = k k 2 ( k 2 - α 2 ) ( E ( ϕ , k ) - k 2 Π ( ϕ , α 2 , k ) - k 2 sin ϕ cos ϕ 1 - k 2 sin 2 ϕ ) partial-derivative elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 𝑘 𝑘 superscript superscript 𝑘 2 superscript 𝑘 2 superscript 𝛼 2 elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript superscript 𝑘 2 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 superscript 𝑘 2 italic-ϕ italic-ϕ 1 superscript 𝑘 2 2 italic-ϕ {\displaystyle{\displaystyle\frac{\partial\Pi\left(\phi,\alpha^{2},k\right)}{% \partial k}=\frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}\left({E\left(\phi,k% \right)-{k^{\prime}}^{2}\Pi\left(\phi,\alpha^{2},k\right)}-\frac{k^{2}\sin\phi% \cos\phi}{\sqrt{1-k^{2}{\sin^{2}}\phi}}\right)}}
\pderiv{\incellintPik@{\phi}{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}\left({\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintPik@{\phi}{\alpha^{2}}{k}}-\frac{k^{2}\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}\right)

diff(EllipticPi(sin(phi), (alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticPi(sin(phi), (alpha)^(2), k)-((k)^(2)* sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2))))
D[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]-Divide[(k)^(2)* Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]])
Failure Aborted
Failed [90 / 90]
Result: Float(undefined)+Float(undefined)*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -5.135398794+1.052011331*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [90 / 90]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.1264235284707635, -0.9763567309038728]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.4.E8 ( k k 2 D k 2 + ( 1 - 3 k 2 ) D k - k ) F ( ϕ , k ) = - k sin ϕ cos ϕ ( 1 - k 2 sin 2 ϕ ) 3 / 2 𝑘 superscript superscript 𝑘 2 superscript subscript 𝐷 𝑘 2 1 3 superscript 𝑘 2 subscript 𝐷 𝑘 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 𝑘 italic-ϕ italic-ϕ superscript 1 superscript 𝑘 2 2 italic-ϕ 3 2 {\displaystyle{\displaystyle(k{k^{\prime}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)F% \left(\phi,k\right)=\frac{-k\sin\phi\cos\phi}{(1-k^{2}{\sin^{2}}\phi)^{3/2}}}}
(k{k^{\prime}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)\incellintFk@{\phi}{k} = \frac{-k\sin@@{\phi}\cos@@{\phi}}{(1-k^{2}\sin^{2}@@{\phi})^{3/2}}

(k*1 - (k)^(2)*(D[k])^(2)+(1 - 3*(k)^(2))*D[k]- k)*EllipticF(sin(phi), k) = (- k*sin(phi)*cos(phi))/((1 - (k)^(2)* (sin(phi))^(2))^(3/2))
(k*1 - (k)^(2)*(Subscript[D, k])^(2)+(1 - 3*(k)^(2))*Subscript[D, k]- k)*EllipticF[\[Phi], (k)^2] == Divide[- k*Sin[\[Phi]]*Cos[\[Phi]],(1 - (k)^(2)* (Sin[\[Phi]])^(2))^(3/2)]
Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.4174282354972822, 0.36074991075375373], Times[Complex[0.43180375739814203, 0.27142936483528934], Plus[Complex[-0.8660254037844387, -0.49999999999999994], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[-0.38000132033999284, 0.977947559972491], Times[Complex[0.3965687056216178, 0.33175091278780894], Plus[Complex[-4.763139720814413, -2.7499999999999996], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.4.E9 ( k k 2 D k 2 + k 2 D k + k ) E ( ϕ , k ) = k sin ϕ cos ϕ 1 - k 2 sin 2 ϕ 𝑘 superscript superscript 𝑘 2 superscript subscript 𝐷 𝑘 2 superscript superscript 𝑘 2 subscript 𝐷 𝑘 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 𝑘 italic-ϕ italic-ϕ 1 superscript 𝑘 2 2 italic-ϕ {\displaystyle{\displaystyle(k{k^{\prime}}^{2}D_{k}^{2}+{k^{\prime}}^{2}D_{k}+% k)E\left(\phi,k\right)=\frac{k\sin\phi\cos\phi}{\sqrt{1-k^{2}{\sin^{2}}\phi}}}}
(k{k^{\prime}}^{2}D_{k}^{2}+{k^{\prime}}^{2}D_{k}+k)\incellintEk@{\phi}{k} = \frac{k\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}

(k*1 - (k)^(2)*(D[k])^(2)+1 - (k)^(2)*D[k]+ k)*EllipticE(sin(phi), k) = (k*sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2)))
(k*1 - (k)^(2)*(Subscript[D, k])^(2)+1 - (k)^(2)*Subscript[D, k]+ k)*EllipticE[\[Phi], (k)^2] == Divide[k*Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]]
Error Failure -
Failed [300 / 300]
Result: Plus[Complex[-0.4327885168580316, -0.2292976446734403], Times[Complex[0.43278851685803155, 0.22929764467344024], Plus[Complex[2.566987298107781, -0.24999999999999997], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[-0.6011783848834926, -0.7526006723022071], Times[Complex[0.44208095936294645, 0.16535187593702125], Plus[Complex[3.2679491924311224, -0.9999999999999999], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.5.E1 K ( k ) = π 2 m = 0 ( 1 2 ) m ( 1 2 ) m m ! m ! k 2 m complete-elliptic-integral-first-kind-K 𝑘 𝜋 2 superscript subscript 𝑚 0 Pochhammer 1 2 𝑚 Pochhammer 1 2 𝑚 𝑚 𝑚 superscript 𝑘 2 𝑚 {\displaystyle{\displaystyle K\left(k\right)=\frac{\pi}{2}\sum_{m=0}^{\infty}% \frac{{\left(\tfrac{1}{2}\right)_{m}}{\left(\tfrac{1}{2}\right)_{m}}}{m!\;m!}k% ^{2m}}}
\compellintKk@{k} = \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m}

EllipticK(k) = (Pi)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity)
EllipticK[(k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None]
Failure Successful Error Successful [Tested: 3]
19.5.E1 π 2 m = 0 ( 1 2 ) m ( 1 2 ) m m ! m ! k 2 m = π 2 F 1 2 ( 1 2 , 1 2 ; 1 ; k 2 ) 𝜋 2 superscript subscript 𝑚 0 Pochhammer 1 2 𝑚 Pochhammer 1 2 𝑚 𝑚 𝑚 superscript 𝑘 2 𝑚 𝜋 2 Gauss-hypergeometric-F-as-2F1 1 2 1 2 1 superscript 𝑘 2 {\displaystyle{\displaystyle\frac{\pi}{2}\sum_{m=0}^{\infty}\frac{{\left(% \tfrac{1}{2}\right)_{m}}{\left(\tfrac{1}{2}\right)_{m}}}{m!\;m!}k^{2m}=\frac{% \pi}{2}{{}_{2}F_{1}}\left(\tfrac{1}{2},\tfrac{1}{2};1;k^{2}\right)}}
\frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} = \frac{\pi}{2}\genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}}

(Pi)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(2)*hypergeom([(1)/(2),(1)/(2)], [1], (k)^(2))
Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*HypergeometricPFQ[{Divide[1,2],Divide[1,2]}, {1}, (k)^(2)]
Failure Successful
Failed [3 / 3]
Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}

Result: Float(infinity)+1.078257824*I
Test Values: {k = 2}

... skip entries to safe data
Successful [Tested: 3]
19.5.E2 E ( k ) = π 2 m = 0 ( - 1 2 ) m ( 1 2 ) m m ! m ! k 2 m complete-elliptic-integral-second-kind-E 𝑘 𝜋 2 superscript subscript 𝑚 0 Pochhammer 1 2 𝑚 Pochhammer 1 2 𝑚 𝑚 𝑚 superscript 𝑘 2 𝑚 {\displaystyle{\displaystyle E\left(k\right)=\frac{\pi}{2}\sum_{m=0}^{\infty}% \frac{{\left(-\tfrac{1}{2}\right)_{m}}{\left(\tfrac{1}{2}\right)_{m}}}{m!\;m!}% k^{2m}}}
\compellintEk@{k} = \frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{-\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m}

EllipticE(k) = (Pi)/(2)*sum((pochhammer(-(1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity)
EllipticE[(k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[-Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None]
Failure Successful
Failed [2 / 3]
Result: Float(infinity)+1.343854231*I
Test Values: {k = 2}

Result: Float(infinity)+2.498348128*I
Test Values: {k = 3}

Successful [Tested: 3]
19.5.E2 π 2 m = 0 ( - 1 2 ) m ( 1 2 ) m m ! m ! k 2 m = π 2 F 1 2 ( - 1 2 , 1 2 ; 1 ; k 2 ) 𝜋 2 superscript subscript 𝑚 0 Pochhammer 1 2 𝑚 Pochhammer 1 2 𝑚 𝑚 𝑚 superscript 𝑘 2 𝑚 𝜋 2 Gauss-hypergeometric-F-as-2F1 1 2 1 2 1 superscript 𝑘 2 {\displaystyle{\displaystyle\frac{\pi}{2}\sum_{m=0}^{\infty}\frac{{\left(-% \tfrac{1}{2}\right)_{m}}{\left(\tfrac{1}{2}\right)_{m}}}{m!\;m!}k^{2m}=\frac{% \pi}{2}{{}_{2}F_{1}}\left(-\tfrac{1}{2},\tfrac{1}{2};1;k^{2}\right)}}
\frac{\pi}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{-\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}k^{2m} = \frac{\pi}{2}\genhyperF{2}{1}@{-\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}}

(Pi)/(2)*sum((pochhammer(-(1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(2)*hypergeom([-(1)/(2),(1)/(2)], [1], (k)^(2))
Divide[Pi,2]*Sum[Divide[Pochhammer[-Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*HypergeometricPFQ[{-Divide[1,2],Divide[1,2]}, {1}, (k)^(2)]
Failure Successful
Failed [2 / 3]
Result: Float(-infinity)-1.343854232*I
Test Values: {k = 2}

Result: Float(-infinity)-2.498348127*I
Test Values: {k = 3}

Successful [Tested: 3]
19.5.E3 D ( k ) = π 4 m = 0 ( 3 2 ) m ( 1 2 ) m ( m + 1 ) ! m ! k 2 m complete-elliptic-integral-D 𝑘 𝜋 4 superscript subscript 𝑚 0 Pochhammer 3 2 𝑚 Pochhammer 1 2 𝑚 𝑚 1 𝑚 superscript 𝑘 2 𝑚 {\displaystyle{\displaystyle D\left(k\right)=\frac{\pi}{4}\sum_{m=0}^{\infty}% \frac{{\left(\tfrac{3}{2}\right)_{m}}{\left(\tfrac{1}{2}\right)_{m}}}{(m+1)!\;% m!}k^{2m}}}
\compellintDk@{k} = \frac{\pi}{4}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{3}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{(m+1)!\;m!}k^{2m}

(EllipticK(k) - EllipticE(k))/(k)^2 = (Pi)/(4)*sum((pochhammer((3)/(2), m)*pochhammer((1)/(2), m))/(factorial(m + 1)*factorial(m))*(k)^(2*m), m = 0..infinity)
Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[Pi,4]*Sum[Divide[Pochhammer[Divide[3,2], m]*Pochhammer[Divide[1,2], m],(m + 1)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-0.08185805455243848, 0.4541460103381727]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.5.E3 π 4 m = 0 ( 3 2 ) m ( 1 2 ) m ( m + 1 ) ! m ! k 2 m = π 4 F 1 2 ( 3 2 , 1 2 ; 2 ; k 2 ) 𝜋 4 superscript subscript 𝑚 0 Pochhammer 3 2 𝑚 Pochhammer 1 2 𝑚 𝑚 1 𝑚 superscript 𝑘 2 𝑚 𝜋 4 Gauss-hypergeometric-F-as-2F1 3 2 1 2 2 superscript 𝑘 2 {\displaystyle{\displaystyle\frac{\pi}{4}\sum_{m=0}^{\infty}\frac{{\left(% \tfrac{3}{2}\right)_{m}}{\left(\tfrac{1}{2}\right)_{m}}}{(m+1)!\;m!}k^{2m}=% \frac{\pi}{4}{{}_{2}F_{1}}\left(\tfrac{3}{2},\tfrac{1}{2};2;k^{2}\right)}}
\frac{\pi}{4}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{3}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{(m+1)!\;m!}k^{2m} = \frac{\pi}{4}\genhyperF{2}{1}@{\tfrac{3}{2},\tfrac{1}{2}}{2}{k^{2}}

(Pi)/(4)*sum((pochhammer((3)/(2), m)*pochhammer((1)/(2), m))/(factorial(m + 1)*factorial(m))*(k)^(2*m), m = 0..infinity) = (Pi)/(4)*hypergeom([(3)/(2),(1)/(2)], [2], (k)^(2))
Divide[Pi,4]*Sum[Divide[Pochhammer[Divide[3,2], m]*Pochhammer[Divide[1,2], m],(m + 1)!*(m)!]*(k)^(2*m), {m, 0, Infinity}, GenerateConditions->None] == Divide[Pi,4]*HypergeometricPFQ[{Divide[3,2],Divide[1,2]}, {2}, (k)^(2)]
Failure Successful
Failed [3 / 3]
Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}

Result: Float(infinity)+.6055280139*I
Test Values: {k = 2}

... skip entries to safe data
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.5.E4 Π ( α 2 , k ) = π 2 n = 0 ( 1 2 ) n n ! m = 0 n ( 1 2 ) m m ! k 2 m α 2 n - 2 m complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 𝜋 2 superscript subscript 𝑛 0 Pochhammer 1 2 𝑛 𝑛 superscript subscript 𝑚 0 𝑛 Pochhammer 1 2 𝑚 𝑚 superscript 𝑘 2 𝑚 superscript 𝛼 2 𝑛 2 𝑚 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)=\frac{\pi}{2}\sum_{n=% 0}^{\infty}\frac{{\left(\tfrac{1}{2}\right)_{n}}}{n!}\sum_{m=0}^{n}\frac{{% \left(\tfrac{1}{2}\right)_{m}}}{m!}k^{2m}\alpha^{2n-2m}}}
\compellintPik@{\alpha^{2}}{k} = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{n}}{n!}\sum_{m=0}^{n}\frac{\Pochhammersym{\tfrac{1}{2}}{m}}{m!}k^{2m}\alpha^{2n-2m}

EllipticPi((alpha)^(2), k) = (Pi)/(2)*sum((pochhammer((1)/(2), n))/(factorial(n))*sum((pochhammer((1)/(2), m))/(factorial(m))*(k)^(2*m)* (alpha)^(2*n - 2*m), m = 0..n), n = 0..infinity)
EllipticPi[\[Alpha]^(2), (k)^2] == Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], n],(n)!]*Sum[Divide[Pochhammer[Divide[1,2], m],(m)!]*(k)^(2*m)* \[Alpha]^(2*n - 2*m), {m, 0, n}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None]
Aborted Failure Error Skipped - Because timed out
19.5.E4 π 2 n = 0 ( 1 2 ) n n ! m = 0 n ( 1 2 ) m m ! k 2 m α 2 n - 2 m = π 2 F 1 ( 1 2 ; 1 2 , 1 ; 1 ; k 2 , α 2 ) 𝜋 2 superscript subscript 𝑛 0 Pochhammer 1 2 𝑛 𝑛 superscript subscript 𝑚 0 𝑛 Pochhammer 1 2 𝑚 𝑚 superscript 𝑘 2 𝑚 superscript 𝛼 2 𝑛 2 𝑚 𝜋 2 Appell-F-1 1 2 1 2 1 1 superscript 𝑘 2 superscript 𝛼 2 {\displaystyle{\displaystyle\frac{\pi}{2}\sum_{n=0}^{\infty}\frac{{\left(% \tfrac{1}{2}\right)_{n}}}{n!}\sum_{m=0}^{n}\frac{{\left(\tfrac{1}{2}\right)_{m% }}}{m!}k^{2m}\alpha^{2n-2m}=\frac{\pi}{2}{F_{1}}\left(\tfrac{1}{2};\tfrac{1}{2% },1;1;k^{2},\alpha^{2}\right)}}
\frac{\pi}{2}\sum_{n=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{n}}{n!}\sum_{m=0}^{n}\frac{\Pochhammersym{\tfrac{1}{2}}{m}}{m!}k^{2m}\alpha^{2n-2m} = \frac{\pi}{2}\AppellF{1}@{\tfrac{1}{2}}{\tfrac{1}{2}}{1}{1}{k^{2}}{\alpha^{2}}

Error
Divide[Pi,2]*Sum[Divide[Pochhammer[Divide[1,2], n],(n)!]*Sum[Divide[Pochhammer[Divide[1,2], m],(m)!]*(k)^(2*m)* \[Alpha]^(2*n - 2*m), {m, 0, n}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Divide[Pi,2]*AppellF[1, , Divide[1,2], Divide[1,2], 1, 1]*(k)^(2)*\[Alpha]^(2)
Missing Macro Error Failure Skip - symbolical successful subtest Skipped - Because timed out
19.5.E5 q = exp ( - π K ( k ) / K ( k ) ) 𝑞 𝜋 complementary-complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle q=\exp\left(-\pi{K^{\prime}}\left(k\right)/K\left% (k\right)\right)}}
q = \exp@{-\pi\ccompellintKk@{k}/\compellintKk@{k}}
r = 1 16 k 2 , 0 k , k 1 formulae-sequence 𝑟 1 16 superscript 𝑘 2 formulae-sequence 0 𝑘 𝑘 1 {\displaystyle{\displaystyle r=\frac{1}{16}k^{2},0\leq k,k\leq 1}}
(exp(- Pi*EllipticCK(k)/EllipticK(k))) = exp(- Pi*EllipticCK(k)/EllipticK(k))
(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]]) == Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]]
Successful Successful - Successful [Tested: 1]
19.5.E7 λ = ( 1 - k ) / ( 2 ( 1 + k ) ) 𝜆 1 superscript 𝑘 2 1 superscript 𝑘 {\displaystyle{\displaystyle\lambda=(1-\sqrt{k^{\prime}})/(2(1+\sqrt{k^{\prime% }}))}}
\lambda = (1-\sqrt{k^{\prime}})/(2(1+\sqrt{k^{\prime}}))

lambda = (1 -sqrt(sqrt(1 - (k)^(2))))/(2*(1 +sqrt(sqrt(1 - (k)^(2)))))
\[Lambda] == (1 -Sqrt[Sqrt[1 - (k)^(2)]])/(2*(1 +Sqrt[Sqrt[1 - (k)^(2)]]))
Skipped - no semantic math Skipped - no semantic math - -
19.5.E8 K ( k ) = π 2 ( 1 + 2 n = 1 q n 2 ) 2 complete-elliptic-integral-first-kind-K 𝑘 𝜋 2 superscript 1 2 superscript subscript 𝑛 1 superscript 𝑞 superscript 𝑛 2 2 {\displaystyle{\displaystyle K\left(k\right)=\frac{\pi}{2}\left(1+2\sum_{n=1}^% {\infty}q^{n^{2}}\right)^{2}}}
\compellintKk@{k} = \frac{\pi}{2}\left(1+2\sum_{n=1}^{\infty}q^{n^{2}}\right)^{2}
| q | < 1 𝑞 1 {\displaystyle{\displaystyle|q|<1}}
EllipticK(k) = (Pi)/(2)*(1 + 2*sum((exp(- Pi*EllipticCK(k)/EllipticK(k)))^((n)^(2)), n = 1..infinity))^(2)
EllipticK[(k)^2] == Divide[Pi,2]*((1 + 2*Sum[(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None]))^(2)
Failure Failure Error
Failed [1 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

19.5.E9 E ( k ) = K ( k ) + 2 π 2 K ( k ) n = 1 ( - 1 ) n n 2 q n 2 1 + 2 n = 1 ( - 1 ) n q n 2 complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-first-kind-K 𝑘 2 superscript 𝜋 2 complete-elliptic-integral-first-kind-K 𝑘 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 𝑛 2 superscript 𝑞 superscript 𝑛 2 1 2 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 𝑞 superscript 𝑛 2 {\displaystyle{\displaystyle E\left(k\right)=K\left(k\right)+\frac{2\pi^{2}}{K% \left(k\right)}\,\frac{\sum_{n=1}^{\infty}(-1)^{n}n^{2}q^{n^{2}}}{1+2\sum_{n=1% }^{\infty}(-1)^{n}q^{n^{2}}}}}
\compellintEk@{k} = \compellintKk@{k}+\frac{2\pi^{2}}{\compellintKk@{k}}\,\frac{\sum_{n=1}^{\infty}(-1)^{n}n^{2}q^{n^{2}}}{1+2\sum_{n=1}^{\infty}(-1)^{n}q^{n^{2}}}
| q | < 1 𝑞 1 {\displaystyle{\displaystyle|q|<1}}
EllipticE(k) = EllipticK(k)+(2*(Pi)^(2))/(EllipticK(k))*(sum((- 1)^(n)* (n)^(2)*(exp(- Pi*EllipticCK(k)/EllipticK(k)))^((n)^(2)), n = 1..infinity))/(1 + 2*sum((- 1)^(n)*(exp(- Pi*EllipticCK(k)/EllipticK(k)))^((n)^(2)), n = 1..infinity))
EllipticE[(k)^2] == EllipticK[(k)^2]+Divide[2*(Pi)^(2),EllipticK[(k)^2]]*Divide[Sum[(- 1)^(n)* (n)^(2)*(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None],1 + 2*Sum[(- 1)^(n)*(Exp[- Pi*EllipticK[1-(k)^2]/EllipticK[(k)^2]])^((n)^(2)), {n, 1, Infinity}, GenerateConditions->None]]
Failure Failure Error Skipped - Because timed out
19.5.E10 K ( k ) = π 2 m = 1 ( 1 + k m ) complete-elliptic-integral-first-kind-K 𝑘 𝜋 2 superscript subscript product 𝑚 1 1 subscript 𝑘 𝑚 {\displaystyle{\displaystyle K\left(k\right)=\frac{\pi}{2}\prod_{m=1}^{\infty}% (1+k_{m})}}
\compellintKk@{k} = \frac{\pi}{2}\prod_{m=1}^{\infty}(1+k_{m})

EllipticK(k) = (Pi)/(2)*product(1 + k[m], m = 1..infinity)
EllipticK[(k)^2] == Divide[Pi,2]*Product[1 + Subscript[k, m], {m, 1, Infinity}, GenerateConditions->None]
Failure Failure Error
Failed [30 / 30]
Result: Plus[DirectedInfinity[], Times[-1.5707963267948966, NProduct[Plus[1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {m, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[k, 1], Rule[Subscript[k, m], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[0.8428751774062981, -1.0782578237498217], Times[-1.5707963267948966, NProduct[Plus[1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {m, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[k, 2], Rule[Subscript[k, m], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.5.E11 k m + 1 = 1 - 1 - k m 2 1 + 1 - k m 2 subscript 𝑘 𝑚 1 1 1 superscript subscript 𝑘 𝑚 2 1 1 superscript subscript 𝑘 𝑚 2 {\displaystyle{\displaystyle k_{m+1}=\frac{1-\sqrt{1-k_{m}^{2}}}{1+\sqrt{1-k_{% m}^{2}}}}}
k_{m+1} = \frac{1-\sqrt{1-k_{m}^{2}}}{1+\sqrt{1-k_{m}^{2}}}

k[m + 1] = (1 -sqrt(1 - (k[m])^(2)))/(1 +sqrt(1 - (k[m])^(2)))
Subscript[k, m + 1] == Divide[1 -Sqrt[1 - (Subscript[k, m])^(2)],1 +Sqrt[1 - (Subscript[k, m])^(2)]]
Skipped - no semantic math Skipped - no semantic math - -
19.6#Ex1 K ( 0 ) = E ( 0 ) complete-elliptic-integral-first-kind-K 0 complete-elliptic-integral-second-kind-E 0 {\displaystyle{\displaystyle K\left(0\right)=E\left(0\right)}}
\compellintKk@{0} = \compellintEk@{0}

EllipticK(0) = EllipticE(0)
EllipticK[(0)^2] == EllipticE[(0)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex1 E ( 0 ) = K ( 1 ) complete-elliptic-integral-second-kind-E 0 complementary-complete-elliptic-integral-first-kind-K 1 {\displaystyle{\displaystyle E\left(0\right)={K^{\prime}}\left(1\right)}}
\compellintEk@{0} = \ccompellintKk@{1}

EllipticE(0) = EllipticCK(1)
EllipticE[(0)^2] == EllipticK[1-(1)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex1 K ( 1 ) = E ( 1 ) complementary-complete-elliptic-integral-first-kind-K 1 complementary-complete-elliptic-integral-second-kind-E 1 {\displaystyle{\displaystyle{K^{\prime}}\left(1\right)={E^{\prime}}\left(1% \right)}}
\ccompellintKk@{1} = \ccompellintEk@{1}

EllipticCK(1) = EllipticCE(1)
EllipticK[1-(1)^2] == EllipticE[1-(1)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex1 E ( 1 ) = 1 2 π complementary-complete-elliptic-integral-second-kind-E 1 1 2 𝜋 {\displaystyle{\displaystyle{E^{\prime}}\left(1\right)=\tfrac{1}{2}\pi}}
\ccompellintEk@{1} = \tfrac{1}{2}\pi

EllipticCE(1) = (1)/(2)*Pi
EllipticE[1-(1)^2] == Divide[1,2]*Pi
Successful Successful - Successful [Tested: 1]
19.6#Ex2 K ( 1 ) = K ( 0 ) complete-elliptic-integral-first-kind-K 1 complementary-complete-elliptic-integral-first-kind-K 0 {\displaystyle{\displaystyle K\left(1\right)={K^{\prime}}\left(0\right)}}
\compellintKk@{1} = \ccompellintKk@{0}

EllipticK(1) = EllipticCK(0)
EllipticK[(1)^2] == EllipticK[1-(0)^2]
Error Failure -
Failed [1 / 1]
Result: Indeterminate
Test Values: {}

19.6#Ex2 K ( 0 ) = complementary-complete-elliptic-integral-first-kind-K 0 {\displaystyle{\displaystyle{K^{\prime}}\left(0\right)=\infty}}
\ccompellintKk@{0} = \infty

EllipticCK(0) = infinity
EllipticK[1-(0)^2] == Infinity
Error Failure -
Failed [1 / 1]
Result: Indeterminate
Test Values: {}

19.6#Ex3 E ( 1 ) = E ( 0 ) complete-elliptic-integral-second-kind-E 1 complementary-complete-elliptic-integral-second-kind-E 0 {\displaystyle{\displaystyle E\left(1\right)={E^{\prime}}\left(0\right)}}
\compellintEk@{1} = \ccompellintEk@{0}

EllipticE(1) = EllipticCE(0)
EllipticE[(1)^2] == EllipticE[1-(0)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex3 E ( 0 ) = 1 complementary-complete-elliptic-integral-second-kind-E 0 1 {\displaystyle{\displaystyle{E^{\prime}}\left(0\right)=1}}
\ccompellintEk@{0} = 1

EllipticCE(0) = 1
EllipticE[1-(0)^2] == 1
Successful Successful - Successful [Tested: 1]
19.6#Ex4 Π ( k 2 , k ) = E ( k ) / k 2 complete-elliptic-integral-third-kind-Pi superscript 𝑘 2 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 {\displaystyle{\displaystyle\Pi\left(k^{2},k\right)=E\left(k\right)/{k^{\prime% }}^{2}}}
\compellintPik@{k^{2}}{k} = \compellintEk@{k}/{k^{\prime}}^{2}
k 2 < 1 superscript 𝑘 2 1 {\displaystyle{\displaystyle k^{2}<1}}
EllipticPi((k)^(2), k) = EllipticE(k)/(1 - (k)^(2))
EllipticPi[(k)^(2), (k)^2] == EllipticE[(k)^2]/(1 - (k)^(2))
Successful Successful - Successful [Tested: 0]
19.6#Ex5 Π ( - k , k ) = 1 4 π ( 1 + k ) - 1 + 1 2 K ( k ) complete-elliptic-integral-third-kind-Pi 𝑘 𝑘 1 4 𝜋 superscript 1 𝑘 1 1 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle\Pi\left(-k,k\right)=\tfrac{1}{4}\pi(1+k)^{-1}+% \tfrac{1}{2}K\left(k\right)}}
\compellintPik@{-k}{k} = \tfrac{1}{4}\pi(1+k)^{-1}+\tfrac{1}{2}\compellintKk@{k}
0 k 2 , k 2 < 1 formulae-sequence 0 superscript 𝑘 2 superscript 𝑘 2 1 {\displaystyle{\displaystyle 0\leq k^{2},k^{2}<1}}
EllipticPi(- k, k) = (1)/(4)*Pi*(1 + k)^(- 1)+(1)/(2)*EllipticK(k)
EllipticPi[- k, (k)^2] == Divide[1,4]*Pi*(1 + k)^(- 1)+Divide[1,2]*EllipticK[(k)^2]
Failure Failure Error Skip - No test values generated
19.6.E3 Π ( α 2 , 0 ) = π / ( 2 1 - α 2 ) , Π ( 0 , k ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 0 𝜋 2 1 superscript 𝛼 2 complete-elliptic-integral-third-kind-Pi 0 𝑘 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},0\right)=\pi/(2\sqrt{1-\alpha^% {2}}),\quad\Pi\left(0,k\right)}}
\compellintPik@{\alpha^{2}}{0} = \pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k}
- < α 2 , α 2 < 1 formulae-sequence superscript 𝛼 2 superscript 𝛼 2 1 {\displaystyle{\displaystyle-\infty<\alpha^{2},\alpha^{2}<1}}
EllipticPi((alpha)^(2), 0) = Pi/(2*sqrt(1 - (alpha)^(2)))
EllipticPi[\[Alpha]^(2), (0)^2] == Pi/(2*Sqrt[1 - \[Alpha]^(2)])
Successful Failure Skip - symbolical successful subtest Error
19.6.E3 π / ( 2 1 - α 2 ) , Π ( 0 , k ) = K ( k ) 𝜋 2 1 superscript 𝛼 2 complete-elliptic-integral-third-kind-Pi 0 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle\pi/(2\sqrt{1-\alpha^{2}}),\quad\Pi\left(0,k\right% )=K\left(k\right)}}
\pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k} = \compellintKk@{k}
- < α 2 , α 2 < 1 formulae-sequence superscript 𝛼 2 superscript 𝛼 2 1 {\displaystyle{\displaystyle-\infty<\alpha^{2},\alpha^{2}<1}}
Pi/(2*sqrt(1 - (alpha)^(2)))
Pi/(2*Sqrt[1 - \[Alpha]^(2)])
Failure Failure Error Error
19.6.E5 Π ( α 2 , k ) = K ( k ) - Π ( k 2 / α 2 , k ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-third-kind-Pi superscript 𝑘 2 superscript 𝛼 2 𝑘 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)=K\left(k\right)-\Pi% \left(k^{2}/\alpha^{2},k\right)}}
\compellintPik@{\alpha^{2}}{k} = \compellintKk@{k}-\compellintPik@{k^{2}/\alpha^{2}}{k}

EllipticPi((alpha)^(2), k) = EllipticK(k)- EllipticPi((k)^(2)/(alpha)^(2), k)
EllipticPi[\[Alpha]^(2), (k)^2] == EllipticK[(k)^2]- EllipticPi[(k)^(2)/\[Alpha]^(2), (k)^2]
Failure Failure Error
Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5]}

Result: Complex[-1.593078238683172, 2.4424906541753444*^-15]
Test Values: {Rule[k, 2], Rule[α, 1.5]}

... skip entries to safe data
19.6#Ex8 Π ( α 2 , 0 ) = 0 complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 0 0 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},0\right)=0}}
\compellintPik@{\alpha^{2}}{0} = 0

EllipticPi((alpha)^(2), 0) = 0
EllipticPi[\[Alpha]^(2), (0)^2] == 0
Failure Failure
Failed [3 / 3]
Result: -1.404962946*I
Test Values: {alpha = 3/2}

Result: 1.813799364
Test Values: {alpha = 1/2}

... skip entries to safe data
Failed [3 / 3]
Result: Complex[0.0, -1.4049629462081452]
Test Values: {Rule[α, 1.5]}

Result: 1.813799364234218
Test Values: {Rule[α, 0.5]}

... skip entries to safe data
19.6#Ex11 F ( 0 , k ) = 0 elliptic-integral-first-kind-F 0 𝑘 0 {\displaystyle{\displaystyle F\left(0,k\right)=0}}
\incellintFk@{0}{k} = 0

EllipticF(sin(0), k) = 0
EllipticF[0, (k)^2] == 0
Successful Successful - Successful [Tested: 3]
19.6#Ex12 F ( ϕ , 0 ) = ϕ elliptic-integral-first-kind-F italic-ϕ 0 italic-ϕ {\displaystyle{\displaystyle F\left(\phi,0\right)=\phi}}
\incellintFk@{\phi}{0} = \phi

EllipticF(sin(phi), 0) = phi
EllipticF[\[Phi], (0)^2] == \[Phi]
Failure Successful
Failed [2 / 10]
Result: .858407346
Test Values: {phi = -2}

Result: -.858407346
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex13 F ( 1 2 π , 1 ) = elliptic-integral-first-kind-F 1 2 𝜋 1 {\displaystyle{\displaystyle F\left(\tfrac{1}{2}\pi,1\right)=\infty}}
\incellintFk@{\tfrac{1}{2}\pi}{1} = \infty

EllipticF(sin((1)/(2)*Pi), 1) = infinity
EllipticF[Divide[1,2]*Pi, (1)^2] == Infinity
Error Failure -
Failed [1 / 1]
Result: Indeterminate
Test Values: {}

19.6#Ex14 F ( 1 2 π , k ) = K ( k ) elliptic-integral-first-kind-F 1 2 𝜋 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle F\left(\tfrac{1}{2}\pi,k\right)=K\left(k\right)}}
\incellintFk@{\tfrac{1}{2}\pi}{k} = \compellintKk@{k}

EllipticF(sin((1)/(2)*Pi), k) = EllipticK(k)
EllipticF[Divide[1,2]*Pi, (k)^2] == EllipticK[(k)^2]
Successful Successful - Successful [Tested: 3]
19.6#Ex15 lim ϕ 0 F ( ϕ , k ) / ϕ = 1 subscript italic-ϕ 0 elliptic-integral-first-kind-F italic-ϕ 𝑘 italic-ϕ 1 {\displaystyle{\displaystyle\lim_{\phi\to 0}\ifrac{F\left(\phi,k\right)}{\phi}% =1}}
\lim_{\phi\to 0}\ifrac{\incellintFk@{\phi}{k}}{\phi} = 1

limit((EllipticF(sin(phi), k))/(phi), phi = 0) = 1
Limit[Divide[EllipticF[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 3]
19.6.E8 F ( ϕ , 1 ) = ( sin ϕ ) R C ( 1 , cos 2 ϕ ) elliptic-integral-first-kind-F italic-ϕ 1 italic-ϕ Carlson-integral-RC 1 2 italic-ϕ {\displaystyle{\displaystyle F\left(\phi,1\right)=(\sin\phi)R_{C}\left(1,{\cos% ^{2}}\phi\right)}}
\incellintFk@{\phi}{1} = (\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}}

Error
EllipticF[\[Phi], (1)^2] == (Sin[\[Phi]])*1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))]
Missing Macro Error Failure -
Failed [2 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[ϕ, -2]}

Result: DirectedInfinity[]
Test Values: {Rule[ϕ, 2]}

19.6.E8 ( sin ϕ ) R C ( 1 , cos 2 ϕ ) = gd - 1 ( ϕ ) italic-ϕ Carlson-integral-RC 1 2 italic-ϕ inverse-Gudermannian italic-ϕ {\displaystyle{\displaystyle(\sin\phi)R_{C}\left(1,{\cos^{2}}\phi\right)={% \operatorname{gd}^{-1}}\left(\phi\right)}}
(\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}} = \aGudermannian@{\phi}
- 1 2 π < ( ϕ ) , ( ϕ ) < 1 2 π formulae-sequence 1 2 𝜋 italic-ϕ italic-ϕ 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<(\phi),(\phi)<\frac{1}{2}\pi}}
Error
(Sin[\[Phi]])*1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))] == InverseGudermannian[\[Phi]]
Missing Macro Error Failure - Successful [Tested: 4]
19.6#Ex16 E ( 0 , k ) = 0 elliptic-integral-second-kind-E 0 𝑘 0 {\displaystyle{\displaystyle E\left(0,k\right)=0}}
\incellintEk@{0}{k} = 0

EllipticE(sin(0), k) = 0
EllipticE[0, (k)^2] == 0
Successful Successful - Successful [Tested: 3]
19.6#Ex17 E ( ϕ , 0 ) = ϕ elliptic-integral-second-kind-E italic-ϕ 0 italic-ϕ {\displaystyle{\displaystyle E\left(\phi,0\right)=\phi}}
\incellintEk@{\phi}{0} = \phi

EllipticE(sin(phi), 0) = phi
EllipticE[\[Phi], (0)^2] == \[Phi]
Failure Successful
Failed [2 / 10]
Result: .858407346
Test Values: {phi = -2}

Result: -.858407346
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex18 E ( 1 2 π , 1 ) = 1 elliptic-integral-second-kind-E 1 2 𝜋 1 1 {\displaystyle{\displaystyle E\left(\tfrac{1}{2}\pi,1\right)=1}}
\incellintEk@{\tfrac{1}{2}\pi}{1} = 1

EllipticE(sin((1)/(2)*Pi), 1) = 1
EllipticE[Divide[1,2]*Pi, (1)^2] == 1
Successful Successful - Successful [Tested: 1]
19.6#Ex19 E ( ϕ , 1 ) = sin ϕ elliptic-integral-second-kind-E italic-ϕ 1 italic-ϕ {\displaystyle{\displaystyle E\left(\phi,1\right)=\sin\phi}}
\incellintEk@{\phi}{1} = \sin@@{\phi}

EllipticE(sin(phi), 1) = sin(phi)
EllipticE[\[Phi], (1)^2] == Sin[\[Phi]]
Successful Failure -
Failed [2 / 10]
Result: -0.1814051463486368
Test Values: {Rule[ϕ, -2]}

Result: 0.1814051463486368
Test Values: {Rule[ϕ, 2]}

19.6#Ex20 E ( 1 2 π , k ) = E ( k ) elliptic-integral-second-kind-E 1 2 𝜋 𝑘 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle E\left(\tfrac{1}{2}\pi,k\right)=E\left(k\right)}}
\incellintEk@{\tfrac{1}{2}\pi}{k} = \compellintEk@{k}

EllipticE(sin((1)/(2)*Pi), k) = EllipticE(k)
EllipticE[Divide[1,2]*Pi, (k)^2] == EllipticE[(k)^2]
Successful Successful - Successful [Tested: 3]
19.6.E10 lim ϕ 0 E ( ϕ , k ) / ϕ = 1 subscript italic-ϕ 0 elliptic-integral-second-kind-E italic-ϕ 𝑘 italic-ϕ 1 {\displaystyle{\displaystyle\lim_{\phi\to 0}\ifrac{E\left(\phi,k\right)}{\phi}% =1}}
\lim_{\phi\to 0}\ifrac{\incellintEk@{\phi}{k}}{\phi} = 1

limit((EllipticE(sin(phi), k))/(phi), phi = 0) = 1
Limit[Divide[EllipticE[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 3]
19.6#Ex21 Π ( 0 , α 2 , k ) = 0 elliptic-integral-third-kind-Pi 0 superscript 𝛼 2 𝑘 0 {\displaystyle{\displaystyle\Pi\left(0,\alpha^{2},k\right)=0}}
\incellintPik@{0}{\alpha^{2}}{k} = 0

EllipticPi(sin(0), (alpha)^(2), k) = 0
EllipticPi[\[Alpha]^(2), 0,(k)^2] == 0
Successful Successful - Successful [Tested: 9]
19.6#Ex22 Π ( ϕ , 0 , 0 ) = ϕ elliptic-integral-third-kind-Pi italic-ϕ 0 0 italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,0,0\right)=\phi}}
\incellintPik@{\phi}{0}{0} = \phi

EllipticPi(sin(phi), 0, 0) = phi
EllipticPi[0, \[Phi],(0)^2] == \[Phi]
Failure Successful
Failed [2 / 10]
Result: .858407346
Test Values: {phi = -2}

Result: -.858407346
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex23 Π ( ϕ , 1 , 0 ) = tan ϕ elliptic-integral-third-kind-Pi italic-ϕ 1 0 italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,1,0\right)=\tan\phi}}
\incellintPik@{\phi}{1}{0} = \tan@@{\phi}

EllipticPi(sin(phi), 1, 0) = tan(phi)
EllipticPi[1, \[Phi],(0)^2] == Tan[\[Phi]]
Failure Successful
Failed [2 / 10]
Result: -4.370079726
Test Values: {phi = -2}

Result: 4.370079726
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex24 Π ( ϕ , α 2 , 0 ) = R C ( c - 1 , c - α 2 ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 0 Carlson-integral-RC 𝑐 1 𝑐 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},0\right)=R_{C}\left(c-1,c% -\alpha^{2}\right)}}
\incellintPik@{\phi}{\alpha^{2}}{0} = \CarlsonellintRC@{c-1}{c-\alpha^{2}}

Error
EllipticPi[\[Alpha]^(2), \[Phi],(0)^2] == 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c - 1)/(c - \[Alpha]^(2))]
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[0.4032669574270382, 0.8997227991212673]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.17167863497284278, 0.9673069947694621]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex25 Π ( ϕ , α 2 , 1 ) = 1 1 - α 2 ( R C ( c , c - 1 ) - α 2 R C ( c , c - α 2 ) ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 1 1 1 superscript 𝛼 2 Carlson-integral-RC 𝑐 𝑐 1 superscript 𝛼 2 Carlson-integral-RC 𝑐 𝑐 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},1\right)=\frac{1}{1-% \alpha^{2}}\left(R_{C}\left(c,c-1\right)-\alpha^{2}R_{C}\left(c,c-\alpha^{2}% \right)\right)}}
\incellintPik@{\phi}{\alpha^{2}}{1} = \frac{1}{1-\alpha^{2}}\left(\CarlsonellintRC@{c}{c-1}-\alpha^{2}\CarlsonellintRC@{c}{c-\alpha^{2}}\right)

Error
EllipticPi[\[Alpha]^(2), \[Phi],(1)^2] == Divide[1,1 - \[Alpha]^(2)]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]- \[Alpha]^(2)* 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - \[Alpha]^(2))])
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[0.39392267303966433, 0.8870442763896845]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.15564928813724596, 0.9274825692848638]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex26 Π ( ϕ , 1 , 1 ) = 1 2 ( R C ( c , c - 1 ) + c ( c - 1 ) - 1 ) elliptic-integral-third-kind-Pi italic-ϕ 1 1 1 2 Carlson-integral-RC 𝑐 𝑐 1 𝑐 superscript 𝑐 1 1 {\displaystyle{\displaystyle\Pi\left(\phi,1,1\right)=\tfrac{1}{2}(R_{C}\left(c% ,c-1\right)+\sqrt{c}(c-1)^{-1})}}
\incellintPik@{\phi}{1}{1} = \tfrac{1}{2}(\CarlsonellintRC@{c}{c-1}+\sqrt{c}(c-1)^{-1})

Error
EllipticPi[1, \[Phi],(1)^2] == Divide[1,2]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]+Sqrt[c]*(c - 1)^(- 1))
Missing Macro Error Failure -
Failed [60 / 60]
Result: Complex[0.42461599644771203, 0.9033982135739806]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.19222674503116347, 1.0138365568937844]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex27 Π ( ϕ , 0 , k ) = F ( ϕ , k ) elliptic-integral-third-kind-Pi italic-ϕ 0 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\Pi\left(\phi,0,k\right)=F\left(\phi,k\right)}}
\incellintPik@{\phi}{0}{k} = \incellintFk@{\phi}{k}

EllipticPi(sin(phi), 0, k) = EllipticF(sin(phi), k)
EllipticPi[0, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2]
Successful Successful - Successful [Tested: 30]
19.6#Ex28 Π ( ϕ , k 2 , k ) = 1 k 2 ( E ( ϕ , k ) - k 2 Δ sin ϕ cos ϕ ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝑘 2 𝑘 1 superscript superscript 𝑘 2 elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript 𝑘 2 Δ italic-ϕ italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,k^{2},k\right)=\frac{1}{{k^{\prime}}% ^{2}}\left(E\left(\phi,k\right)-\frac{k^{2}}{\Delta}\sin\phi\cos\phi\right)}}
\incellintPik@{\phi}{k^{2}}{k} = \frac{1}{{k^{\prime}}^{2}}\left(\incellintEk@{\phi}{k}-\frac{k^{2}}{\Delta}\sin@@{\phi}\cos@@{\phi}\right)

EllipticPi(sin(phi), (k)^(2), k) = (1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)-((k)^(2))/(Delta)*sin(phi)*cos(phi))
EllipticPi[(k)^(2), \[Phi],(k)^2] == Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]-Divide[(k)^(2),\[CapitalDelta]]*Sin[\[Phi]]*Cos[\[Phi]])
Failure Failure
Failed [300 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.4574406724+1.116997071*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.8161437733664769, 0.6845645198965172]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.6#Ex29 Π ( ϕ , 1 , k ) = F ( ϕ , k ) - 1 k 2 ( E ( ϕ , k ) - Δ tan ϕ ) elliptic-integral-third-kind-Pi italic-ϕ 1 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 1 superscript superscript 𝑘 2 elliptic-integral-second-kind-E italic-ϕ 𝑘 Δ italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,1,k\right)=F\left(\phi,k\right)-% \frac{1}{{k^{\prime}}^{2}}(E\left(\phi,k\right)-\Delta\tan\phi)}}
\incellintPik@{\phi}{1}{k} = \incellintFk@{\phi}{k}-\frac{1}{{k^{\prime}}^{2}}(\incellintEk@{\phi}{k}-\Delta\tan@@{\phi})

EllipticPi(sin(phi), 1, k) = EllipticF(sin(phi), k)-(1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)- Delta*tan(phi))
EllipticPi[1, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2]-Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]- \[CapitalDelta]*Tan[\[Phi]])
Failure Failure
Failed [300 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.5381374542+.4861981155*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.12805668293605252, 0.0652384492706456]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.6#Ex30 Π ( 1 2 π , α 2 , k ) = Π ( α 2 , k ) elliptic-integral-third-kind-Pi 1 2 𝜋 superscript 𝛼 2 𝑘 complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 {\displaystyle{\displaystyle\Pi\left(\tfrac{1}{2}\pi,\alpha^{2},k\right)=\Pi% \left(\alpha^{2},k\right)}}
\incellintPik@{\tfrac{1}{2}\pi}{\alpha^{2}}{k} = \compellintPik@{\alpha^{2}}{k}

EllipticPi(sin((1)/(2)*Pi), (alpha)^(2), k) = EllipticPi((alpha)^(2), k)
EllipticPi[\[Alpha]^(2), Divide[1,2]*Pi,(k)^2] == EllipticPi[\[Alpha]^(2), (k)^2]
Successful Successful - Successful [Tested: 9]
19.6#Ex31 lim ϕ 0 Π ( ϕ , α 2 , k ) / ϕ = 1 subscript italic-ϕ 0 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 italic-ϕ 1 {\displaystyle{\displaystyle\lim_{\phi\to 0}\ifrac{\Pi\left(\phi,\alpha^{2},k% \right)}{\phi}=1}}
\lim_{\phi\to 0}\ifrac{\incellintPik@{\phi}{\alpha^{2}}{k}}{\phi} = 1

limit((EllipticPi(sin(phi), (alpha)^(2), k))/(phi), phi = 0) = 1
Limit[Divide[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 9]
19.6#Ex32 R C ( x , x ) = x - 1 / 2 Carlson-integral-RC 𝑥 𝑥 superscript 𝑥 1 2 {\displaystyle{\displaystyle R_{C}\left(x,x\right)=x^{-1/2}}}
\CarlsonellintRC@{x}{x} = x^{-1/2}

Error
1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(x)] == (x)^(- 1/2)
Missing Macro Error Successful - Successful [Tested: 3]
19.6#Ex33 R C ( λ x , λ y ) = λ - 1 / 2 R C ( x , y ) Carlson-integral-RC 𝜆 𝑥 𝜆 𝑦 superscript 𝜆 1 2 Carlson-integral-RC 𝑥 𝑦 {\displaystyle{\displaystyle R_{C}\left(\lambda x,\lambda y\right)=\lambda^{-1% /2}R_{C}\left(x,y\right)}}
\CarlsonellintRC@{\lambda x}{\lambda y} = \lambda^{-1/2}\CarlsonellintRC@{x}{y}

Error
1/Sqrt[\[Lambda]*y]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Lambda]*x)/(\[Lambda]*y)] == \[Lambda]^(- 1/2)* 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]
Missing Macro Error Failure -
Failed [75 / 180]
Result: Complex[2.0541315094196904, 2.1051836996148214]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[2.941079989400646, 0.036099349881403064]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex35 R C ( 0 , y ) = 1 2 π y - 1 / 2 Carlson-integral-RC 0 𝑦 1 2 𝜋 superscript 𝑦 1 2 {\displaystyle{\displaystyle R_{C}\left(0,y\right)=\tfrac{1}{2}\pi y^{-1/2}}}
\CarlsonellintRC@{0}{y} = \tfrac{1}{2}\pi y^{-1/2}
| ph y | < π phase 𝑦 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}y|<\pi}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == Divide[1,2]*Pi*(y)^(- 1/2)
Missing Macro Error Successful - Successful [Tested: 3]
19.6#Ex36 R C ( 0 , y ) = 0 Carlson-integral-RC 0 𝑦 0 {\displaystyle{\displaystyle R_{C}\left(0,y\right)=0}}
\CarlsonellintRC@{0}{y} = 0
y < 0 𝑦 0 {\displaystyle{\displaystyle y<0}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == 0
Missing Macro Error Failure -
Failed [3 / 3]
Result: Complex[0.0, -1.2825498301618643]
Test Values: {Rule[y, -1.5]}

Result: Complex[0.0, -2.221441469079183]
Test Values: {Rule[y, -0.5]}

... skip entries to safe data
19.7.E1 E ( k ) K ( k ) + E ( k ) K ( k ) - K ( k ) K ( k ) = 1 2 π complete-elliptic-integral-second-kind-E 𝑘 complementary-complete-elliptic-integral-first-kind-K 𝑘 complementary-complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-first-kind-K 𝑘 complementary-complete-elliptic-integral-first-kind-K 𝑘 1 2 𝜋 {\displaystyle{\displaystyle E\left(k\right){K^{\prime}}\left(k\right)+{E^{% \prime}}\left(k\right)K\left(k\right)-K\left(k\right){K^{\prime}}\left(k\right% )=\tfrac{1}{2}\pi}}
\compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi

EllipticE(k)*EllipticCK(k)+ EllipticCE(k)*EllipticK(k)- EllipticK(k)*EllipticCK(k) = (1)/(2)*Pi
EllipticE[(k)^2]*EllipticK[1-(k)^2]+ EllipticE[1-(k)^2]*EllipticK[(k)^2]- EllipticK[(k)^2]*EllipticK[1-(k)^2] == Divide[1,2]*Pi
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex1 K ( i k / k ) = k K ( k ) complete-elliptic-integral-first-kind-K 𝑖 𝑘 superscript 𝑘 superscript 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(ik/k^{\prime}\right)=k^{\prime}K\left(k% \right)}}
\compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}

EllipticK(I*k/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*EllipticK(k)
EllipticK[(I*k/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*EllipticK[(k)^2]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.220446049250313*^-16, -2.9198052634126777]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex2 K ( - i k / k ) = k K ( k ) complete-elliptic-integral-first-kind-K 𝑖 superscript 𝑘 𝑘 𝑘 complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle K\left(-ik^{\prime}/k\right)=kK\left(k^{\prime}% \right)}}
\compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}

EllipticK(- I*sqrt(1 - (k)^(2))/k) = k*EllipticK(sqrt(1 - (k)^(2)))
EllipticK[(- I*Sqrt[1 - (k)^(2)]/k)^2] == k*EllipticK[(Sqrt[1 - (k)^(2)])^2]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex3 E ( i k / k ) = ( 1 / k ) E ( k ) complete-elliptic-integral-second-kind-E 𝑖 𝑘 superscript 𝑘 1 superscript 𝑘 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle E\left(ik/k^{\prime}\right)=(1/k^{\prime})E\left(% k\right)}}
\compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}

EllipticE(I*k/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*EllipticE(k)
EllipticE[(I*k/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*EllipticE[(k)^2]
Failure Failure
Failed [3 / 3]
Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}

Result: .6e-9+.4691535424*I
Test Values: {k = 2}

... skip entries to safe data
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-5.551115123125783*^-16, 0.46915354293820644]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex4 E ( - i k / k ) = ( 1 / k ) E ( k ) complete-elliptic-integral-second-kind-E 𝑖 superscript 𝑘 𝑘 1 𝑘 complete-elliptic-integral-second-kind-E superscript 𝑘 {\displaystyle{\displaystyle E\left(-ik^{\prime}/k\right)=(1/k)E\left(k^{% \prime}\right)}}
\compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}

EllipticE(- I*sqrt(1 - (k)^(2))/k) = (1/k)*EllipticE(sqrt(1 - (k)^(2)))
EllipticE[(- I*Sqrt[1 - (k)^(2)]/k)^2] == (1/k)*EllipticE[(Sqrt[1 - (k)^(2)])^2]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex5 K ( 1 / k ) = k ( K ( k ) - i K ( k ) ) complete-elliptic-integral-first-kind-K 1 𝑘 𝑘 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle K\left(1/k\right)=k(K\left(k\right)-\mathrm{i}K% \left(k^{\prime}\right))}}
\compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})

EllipticK(1/k) = k*(EllipticK(k)- I*EllipticK(sqrt(1 - (k)^(2))))
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]- I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.220446049250313*^-16, 4.313031294999287]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex5 K ( 1 / k ) = k ( K ( k ) + i K ( k ) ) complete-elliptic-integral-first-kind-K 1 𝑘 𝑘 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle K\left(1/k\right)=k(K\left(k\right)+\mathrm{i}K% \left(k^{\prime}\right))}}
\compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})

EllipticK(1/k) = k*(EllipticK(k)+ I*EllipticK(sqrt(1 - (k)^(2))))
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]+ I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex6 K ( 1 / k ) = k ( K ( k ) + i K ( k ) ) complete-elliptic-integral-first-kind-K 1 superscript 𝑘 superscript 𝑘 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(1/k^{\prime}\right)=k^{\prime}(K\left(k^{% \prime}\right)+\mathrm{i}K\left(k\right))}}
\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})

EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))+ I*EllipticK(k))
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[2.9198052634126785, -3.7351946687866775]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex6 K ( 1 / k ) = k ( K ( k ) - i K ( k ) ) complete-elliptic-integral-first-kind-K 1 superscript 𝑘 superscript 𝑘 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(1/k^{\prime}\right)=k^{\prime}(K\left(k^{% \prime}\right)-\mathrm{i}K\left(k\right))}}
\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})

EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))- I*EllipticK(k))
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*EllipticK[(k)^2])
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex7 E ( 1 / k ) = ( 1 / k ) ( E ( k ) + i E ( k ) - k 2 K ( k ) - i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 𝑘 1 𝑘 complete-elliptic-integral-second-kind-E 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E superscript 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle E\left(1/k\right)=(1/k)\left(E\left(k\right)+% \mathrm{i}E\left(k^{\prime}\right)-{k^{\prime}}^{2}K\left(k\right)-\mathrm{i}k% ^{2}K\left(k^{\prime}\right)\right)}}
\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)

EllipticE(1/k) = (1/k)*(EllipticE(k)+ I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)- I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]+ I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]- I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[3.4500631209220436, -1.8829831432620088]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex7 E ( 1 / k ) = ( 1 / k ) ( E ( k ) - i E ( k ) - k 2 K ( k ) + i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 𝑘 1 𝑘 complete-elliptic-integral-second-kind-E 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E superscript 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle E\left(1/k\right)=(1/k)\left(E\left(k\right)-% \mathrm{i}E\left(k^{\prime}\right)-{k^{\prime}}^{2}K\left(k\right)+\mathrm{i}k% ^{2}K\left(k^{\prime}\right)\right)}}
\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)

EllipticE(1/k) = (1/k)*(EllipticE(k)- I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)+ I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]- I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]+ I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[3.4500631209220436, -3.773902383124376]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex8 E ( 1 / k ) = ( 1 / k ) ( E ( k ) - i E ( k ) - k 2 K ( k ) + i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 superscript 𝑘 1 superscript 𝑘 complete-elliptic-integral-second-kind-E superscript 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E 𝑘 superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle E\left(1/k^{\prime}\right)=(1/k^{\prime})\left(E% \left(k^{\prime}\right)-\mathrm{i}E\left(k\right)-k^{2}K\left(k^{\prime}\right% )+\mathrm{i}{k^{\prime}}^{2}K\left(k\right)\right)}}
\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)

EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))- I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))+ I*1 - (k)^(2)*EllipticK(k))
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]- I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*1 - (k)^(2)*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-1.1384238737361991, -2.262384972182541]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex8 E ( 1 / k ) = ( 1 / k ) ( E ( k ) + i E ( k ) - k 2 K ( k ) - i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 superscript 𝑘 1 superscript 𝑘 complete-elliptic-integral-second-kind-E superscript 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E 𝑘 superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle E\left(1/k^{\prime}\right)=(1/k^{\prime})\left(E% \left(k^{\prime}\right)+\mathrm{i}E\left(k\right)-k^{2}K\left(k^{\prime}\right% )-\mathrm{i}{k^{\prime}}^{2}K\left(k\right)\right)}}
\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)

EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))+ I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))- I*1 - (k)^(2)*EllipticK(k))
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*1 - (k)^(2)*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-0.45287687829515355, -3.814134176668458]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex19 F ( i ϕ , k ) = i F ( ψ , k ) elliptic-integral-first-kind-F 𝑖 italic-ϕ 𝑘 𝑖 elliptic-integral-first-kind-F 𝜓 superscript 𝑘 {\displaystyle{\displaystyle F\left(i\phi,k\right)=iF\left(\psi,k^{\prime}% \right)}}
\incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}

EllipticF(sin(I*phi), k) = I*EllipticF(sin(psi), sqrt(1 - (k)^(2)))
EllipticF[I*\[Phi], (k)^2] == I*EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]
Failure Failure
Failed [300 / 300]
Result: .1428695990-.263545696e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .749290340e-1-.334629029e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.020142137049999537, -0.0010462389457662757]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.015860617706546204, -0.003938067237051424]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.7#Ex20 E ( i ϕ , k ) = i ( F ( ψ , k ) - E ( ψ , k ) + ( tan ψ ) 1 - k 2 sin 2 ψ ) elliptic-integral-second-kind-E 𝑖 italic-ϕ 𝑘 𝑖 elliptic-integral-first-kind-F 𝜓 superscript 𝑘 elliptic-integral-second-kind-E 𝜓 superscript 𝑘 𝜓 1 superscript superscript 𝑘 2 2 𝜓 {\displaystyle{\displaystyle E\left(i\phi,k\right)=i\left(F\left(\psi,k^{% \prime}\right)-E\left(\psi,k^{\prime}\right)+(\tan\psi)\sqrt{1-{k^{\prime}}^{2% }{\sin^{2}}\psi}\right)}}
\incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)

EllipticE(sin(I*phi), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- EllipticE(sin(psi), sqrt(1 - (k)^(2)))+(tan(psi))*sqrt(1 -1 - (k)^(2)*(sin(psi))^(2)))
EllipticE[I*\[Phi], (k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- EllipticE[\[Psi], (Sqrt[1 - (k)^(2)])^2]+(Tan[\[Psi]])*Sqrt[1 -1 - (k)^(2)*(Sin[\[Psi]])^(2)])
Failure Failure
Failed [300 / 300]
Result: -.9970133474-.1125517221*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -2.257467281-.7782721018*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.3893501368763376, 0.20738614458301174]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6710974690872284, 0.0060773305020283]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.7#Ex21 Π ( i ϕ , α 2 , k ) = i ( F ( ψ , k ) - α 2 Π ( ψ , 1 - α 2 , k ) ) / ( 1 - α 2 ) elliptic-integral-third-kind-Pi 𝑖 italic-ϕ superscript 𝛼 2 𝑘 𝑖 elliptic-integral-first-kind-F 𝜓 superscript 𝑘 superscript 𝛼 2 elliptic-integral-third-kind-Pi 𝜓 1 superscript 𝛼 2 superscript 𝑘 1 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(i\phi,\alpha^{2},k\right)=i\left(F\left(% \psi,k^{\prime}\right)-\alpha^{2}\Pi\left(\psi,1-\alpha^{2},k^{\prime}\right)% \right)/{(1-\alpha^{2})}}}
\incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}

EllipticPi(sin(I*phi), (alpha)^(2), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- (alpha)^(2)* EllipticPi(sin(psi), 1 - (alpha)^(2), sqrt(1 - (k)^(2))))/(1 - (alpha)^(2))
EllipticPi[\[Alpha]^(2), I*\[Phi],(k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- \[Alpha]^(2)* EllipticPi[1 - \[Alpha]^(2), \[Psi],(Sqrt[1 - (k)^(2)])^2])/(1 - \[Alpha]^(2))
Failure Failure
Failed [292 / 300]
Result: .926834363e-2-.484444094e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.130749569e-2-.277524276e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [298 / 300]
Result: Complex[0.013291772923717082, -0.006719909387202905]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.00953602334602252, -0.007394575555177196]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex1 a n + 1 = a n + g n 2 subscript 𝑎 𝑛 1 subscript 𝑎 𝑛 subscript 𝑔 𝑛 2 {\displaystyle{\displaystyle a_{n+1}=\frac{a_{n}+g_{n}}{2}}}
a_{n+1} = \frac{a_{n}+g_{n}}{2}

a[n + 1] = (a[n]+ g[n])/(2)
Subscript[a, n + 1] == Divide[Subscript[a, n]+ Subscript[g, n],2]
Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex2 g n + 1 = a n g n subscript 𝑔 𝑛 1 subscript 𝑎 𝑛 subscript 𝑔 𝑛 {\displaystyle{\displaystyle g_{n+1}=\sqrt{a_{n}g_{n}}}}
g_{n+1} = \sqrt{a_{n}g_{n}}

g[n + 1] = sqrt(a[n]*g[n])
Subscript[g, n + 1] == Sqrt[Subscript[a, n]*Subscript[g, n]]
Skipped - no semantic math Skipped - no semantic math - -
19.8.E2 c n = a n 2 - g n 2 subscript 𝑐 𝑛 superscript subscript 𝑎 𝑛 2 superscript subscript 𝑔 𝑛 2 {\displaystyle{\displaystyle c_{n}=\sqrt{a_{n}^{2}-g_{n}^{2}}}}
c_{n} = \sqrt{a_{n}^{2}-g_{n}^{2}}

c[n] = sqrt((a[n])^(2)- (g[n])^(2))
Subscript[c, n] == Sqrt[(Subscript[a, n])^(2)- (Subscript[g, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.8.E3 c n + 1 = a n - g n 2 subscript 𝑐 𝑛 1 subscript 𝑎 𝑛 subscript 𝑔 𝑛 2 {\displaystyle{\displaystyle c_{n+1}=\frac{a_{n}-g_{n}}{2}}}
c_{n+1} = \frac{a_{n}-g_{n}}{2}

c[n + 1] = (a[n]- g[n])/(2)
Subscript[c, n + 1] == Divide[Subscript[a, n]- Subscript[g, n],2]
Skipped - no semantic math Skipped - no semantic math - -
19.8.E4 1 M ( a 0 , g 0 ) = 2 π 0 π / 2 d θ a 0 2 cos 2 θ + g 0 2 sin 2 θ 1 arithmetic-geometric-mean subscript 𝑎 0 subscript 𝑔 0 2 𝜋 superscript subscript 0 𝜋 2 𝜃 superscript subscript 𝑎 0 2 2 𝜃 superscript subscript 𝑔 0 2 2 𝜃 {\displaystyle{\displaystyle\frac{1}{M\left(a_{0},g_{0}\right)}=\frac{2}{\pi}% \int_{0}^{\pi/2}\frac{\mathrm{d}\theta}{\sqrt{a_{0}^{2}{\cos^{2}}\theta+g_{0}^% {2}{\sin^{2}}\theta}}}}
\frac{1}{\AGM@{a_{0}}{g_{0}}} = \frac{2}{\pi}\int_{0}^{\pi/2}\frac{\diff{\theta}}{\sqrt{a_{0}^{2}\cos^{2}@@{\theta}+g_{0}^{2}\sin^{2}@@{\theta}}}

(1)/(GaussAGM(a[0], g[0])) = (2)/(Pi)*int((1)/(sqrt((a[0])^(2)*(cos(theta))^(2)+ (g[0])^(2)*(sin(theta))^(2))), theta = 0..Pi/2)
Error
Failure Missing Macro Error Error Skip - symbolical successful subtest
19.8.E4 2 π 0 π / 2 d θ a 0 2 cos 2 θ + g 0 2 sin 2 θ = 1 π 0 d t t ( t + a 0 2 ) ( t + g 0 2 ) 2 𝜋 superscript subscript 0 𝜋 2 𝜃 superscript subscript 𝑎 0 2 2 𝜃 superscript subscript 𝑔 0 2 2 𝜃 1 𝜋 superscript subscript 0 𝑡 𝑡 𝑡 superscript subscript 𝑎 0 2 𝑡 superscript subscript 𝑔 0 2 {\displaystyle{\displaystyle\frac{2}{\pi}\int_{0}^{\pi/2}\frac{\mathrm{d}% \theta}{\sqrt{a_{0}^{2}{\cos^{2}}\theta+g_{0}^{2}{\sin^{2}}\theta}}=\frac{1}{% \pi}\int_{0}^{\infty}\frac{\mathrm{d}t}{\sqrt{t(t+a_{0}^{2})(t+g_{0}^{2})}}}}
\frac{2}{\pi}\int_{0}^{\pi/2}\frac{\diff{\theta}}{\sqrt{a_{0}^{2}\cos^{2}@@{\theta}+g_{0}^{2}\sin^{2}@@{\theta}}} = \frac{1}{\pi}\int_{0}^{\infty}\frac{\diff{t}}{\sqrt{t(t+a_{0}^{2})(t+g_{0}^{2})}}

(2)/(Pi)*int((1)/(sqrt((a[0])^(2)*(cos(theta))^(2)+ (g[0])^(2)*(sin(theta))^(2))), theta = 0..Pi/2) = (1)/(Pi)*int((1)/(sqrt(t*(t + (a[0])^(2))*(t + (g[0])^(2)))), t = 0..infinity)
Divide[2,Pi]*Integrate[Divide[1,Sqrt[(Subscript[a, 0])^(2)*(Cos[\[Theta]])^(2)+ (Subscript[g, 0])^(2)*(Sin[\[Theta]])^(2)]], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Divide[1,Sqrt[t*(t + (Subscript[a, 0])^(2))*(t + (Subscript[g, 0])^(2))]], {t, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.8.E5 K ( k ) = π 2 M ( 1 , k ) complete-elliptic-integral-first-kind-K 𝑘 𝜋 2 arithmetic-geometric-mean 1 superscript 𝑘 {\displaystyle{\displaystyle K\left(k\right)=\frac{\pi}{2M\left(1,k^{\prime}% \right)}}}
\compellintKk@{k} = \frac{\pi}{2\AGM@{1}{k^{\prime}}}
- < k 2 , k 2 < 1 formulae-sequence superscript 𝑘 2 superscript 𝑘 2 1 {\displaystyle{\displaystyle-\infty<k^{2},k^{2}<1}}
EllipticK(k) = (Pi)/(2*GaussAGM(1, sqrt(1 - (k)^(2))))
Error
Failure Missing Macro Error Error -
19.8.E6 E ( k ) = π 2 M ( 1 , k ) ( a 0 2 - n = 0 2 n - 1 c n 2 ) complete-elliptic-integral-second-kind-E 𝑘 𝜋 2 arithmetic-geometric-mean 1 superscript 𝑘 superscript subscript 𝑎 0 2 superscript subscript 𝑛 0 superscript 2 𝑛 1 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle E\left(k\right)=\frac{\pi}{2M\left(1,k^{\prime}% \right)}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right)}}
\compellintEk@{k} = \frac{\pi}{2\AGM@{1}{k^{\prime}}}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right)
- < k 2 , k 2 < 1 , a 0 = 1 , g 0 = k formulae-sequence superscript 𝑘 2 formulae-sequence superscript 𝑘 2 1 formulae-sequence subscript 𝑎 0 1 subscript 𝑔 0 superscript 𝑘 {\displaystyle{\displaystyle-\infty<k^{2},k^{2}<1,a_{0}=1,g_{0}=k^{\prime}}}
EllipticE(k) = (Pi)/(2*GaussAGM(1, sqrt(1 - (k)^(2))))*((a[0])^(2)- sum((2)^(n - 1)* (c[n])^(2), n = 0..infinity))
Error
Failure Missing Macro Error Error -
19.8.E6 π 2 M ( 1 , k ) ( a 0 2 - n = 0 2 n - 1 c n 2 ) = K ( k ) ( a 1 2 - n = 2 2 n - 1 c n 2 ) 𝜋 2 arithmetic-geometric-mean 1 superscript 𝑘 superscript subscript 𝑎 0 2 superscript subscript 𝑛 0 superscript 2 𝑛 1 superscript subscript 𝑐 𝑛 2 complete-elliptic-integral-first-kind-K 𝑘 superscript subscript 𝑎 1 2 superscript subscript 𝑛 2 superscript 2 𝑛 1 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle\frac{\pi}{2M\left(1,k^{\prime}\right)}\left(a_{0}% ^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right)=K\left(k\right)\left(a_{1}^{2}% -\sum_{n=2}^{\infty}2^{n-1}c_{n}^{2}\right)}}
\frac{\pi}{2\AGM@{1}{k^{\prime}}}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right) = \compellintKk@{k}\left(a_{1}^{2}-\sum_{n=2}^{\infty}2^{n-1}c_{n}^{2}\right)
- < k 2 , k 2 < 1 , a 0 = 1 , g 0 = k formulae-sequence superscript 𝑘 2 formulae-sequence superscript 𝑘 2 1 formulae-sequence subscript 𝑎 0 1 subscript 𝑔 0 superscript 𝑘 {\displaystyle{\displaystyle-\infty<k^{2},k^{2}<1,a_{0}=1,g_{0}=k^{\prime}}}
(Pi)/(2*GaussAGM(1, sqrt(1 - (k)^(2))))*((a[0])^(2)- sum((2)^(n - 1)* (c[n])^(2), n = 0..infinity)) = EllipticK(k)*((a[1])^(2)- sum((2)^(n - 1)* (c[n])^(2), n = 2..infinity))
Error
Failure Missing Macro Error Error -
19.8.E7 Π ( α 2 , k ) = π 4 M ( 1 , k ) ( 2 + α 2 1 - α 2 n = 0 Q n ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 𝜋 4 arithmetic-geometric-mean 1 superscript 𝑘 2 superscript 𝛼 2 1 superscript 𝛼 2 superscript subscript 𝑛 0 subscript 𝑄 𝑛 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)=\frac{\pi}{4M\left(1,% k^{\prime}\right)}\left(2+\frac{\alpha^{2}}{1-\alpha^{2}}\sum_{n=0}^{\infty}Q_% {n}\right)}}
\compellintPik@{\alpha^{2}}{k} = \frac{\pi}{4\AGM@{1}{k^{\prime}}}\left(2+\frac{\alpha^{2}}{1-\alpha^{2}}\sum_{n=0}^{\infty}Q_{n}\right)
- < k 2 , k 2 < 1 , - < α 2 , α 2 < 1 formulae-sequence superscript 𝑘 2 formulae-sequence superscript 𝑘 2 1 formulae-sequence superscript 𝛼 2 superscript 𝛼 2 1 {\displaystyle{\displaystyle-\infty<k^{2},k^{2}<1,-\infty<\alpha^{2},\alpha^{2% }<1}}
EllipticPi((alpha)^(2), k) = (Pi)/(4*GaussAGM(1, sqrt(1 - (k)^(2))))*(2 +((alpha)^(2))/(1 - (alpha)^(2))*sum(Q[n], n = 0..infinity))
Error
Failure Missing Macro Error Error -
19.8#Ex3 p n + 1 = p n 2 + a n g n 2 p n subscript 𝑝 𝑛 1 superscript subscript 𝑝 𝑛 2 subscript 𝑎 𝑛 subscript 𝑔 𝑛 2 subscript 𝑝 𝑛 {\displaystyle{\displaystyle p_{n+1}=\frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}}}}
p_{n+1} = \frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}}

p[n + 1] = ((p[n])^(2)+ a[n]*g[n])/(2*p[n])
Subscript[p, n + 1] == Divide[(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n],2*Subscript[p, n]]
Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex4 ε n = p n 2 - a n g n p n 2 + a n g n subscript 𝜀 𝑛 superscript subscript 𝑝 𝑛 2 subscript 𝑎 𝑛 subscript 𝑔 𝑛 superscript subscript 𝑝 𝑛 2 subscript 𝑎 𝑛 subscript 𝑔 𝑛 {\displaystyle{\displaystyle\varepsilon_{n}=\frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^% {2}+a_{n}g_{n}}}}
\varepsilon_{n} = \frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^{2}+a_{n}g_{n}}

varepsilon[n] = ((p[n])^(2)- a[n]*g[n])/((p[n])^(2)+ a[n]*g[n])
Subscript[\[CurlyEpsilon], n] == Divide[(Subscript[p, n])^(2)- Subscript[a, n]*Subscript[g, n],(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n]]
Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex5 Q n + 1 = 1 2 Q n ε n subscript 𝑄 𝑛 1 1 2 subscript 𝑄 𝑛 subscript 𝜀 𝑛 {\displaystyle{\displaystyle Q_{n+1}=\tfrac{1}{2}Q_{n}\varepsilon_{n}}}
Q_{n+1} = \tfrac{1}{2}Q_{n}\varepsilon_{n}

Q[n + 1] = (1)/(2)*Q[n]*varepsilon[n]
Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Subscript[\[CurlyEpsilon], n]
Skipped - no semantic math Skipped - no semantic math - -
19.8.E9 Π ( α 2 , k ) = π 4 M ( 1 , k ) k 2 k 2 - α 2 n = 0 Q n complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 𝜋 4 arithmetic-geometric-mean 1 superscript 𝑘 superscript 𝑘 2 superscript 𝑘 2 superscript 𝛼 2 superscript subscript 𝑛 0 subscript 𝑄 𝑛 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)=\frac{\pi}{4M\left(1,% k^{\prime}\right)}\frac{k^{2}}{k^{2}-\alpha^{2}}\sum_{n=0}^{\infty}Q_{n}}}
\compellintPik@{\alpha^{2}}{k} = \frac{\pi}{4\AGM@{1}{k^{\prime}}}\frac{k^{2}}{k^{2}-\alpha^{2}}\sum_{n=0}^{\infty}Q_{n}
- < k 2 , k 2 < 1 , 1 < α 2 , α 2 < formulae-sequence superscript 𝑘 2 formulae-sequence superscript 𝑘 2 1 formulae-sequence 1 superscript 𝛼 2 superscript 𝛼 2 {\displaystyle{\displaystyle-\infty<k^{2},k^{2}<1,1<\alpha^{2},\alpha^{2}<% \infty}}
EllipticPi((alpha)^(2), k) = (Pi)/(4*GaussAGM(1, sqrt(1 - (k)^(2))))*((k)^(2))/((k)^(2)- (alpha)^(2))*sum(Q[n], n = 0..infinity)
Error
Failure Missing Macro Error Error -
19.8.E10 p 0 2 = 1 - ( k 2 / α 2 ) superscript subscript 𝑝 0 2 1 superscript 𝑘 2 superscript 𝛼 2 {\displaystyle{\displaystyle p_{0}^{2}=1-(k^{2}/\alpha^{2})}}
p_{0}^{2} = 1-(k^{2}/\alpha^{2})

(p[0])^(2) = 1 -((k)^(2)/(alpha)^(2))
(Subscript[p, 0])^(2) == 1 -((k)^(2)/\[Alpha]^(2))
Skipped - no semantic math Skipped - no semantic math - -
19.8#Ex8 K ( k ) = ( 1 + k 1 ) K ( k 1 ) complete-elliptic-integral-first-kind-K 𝑘 1 subscript 𝑘 1 complete-elliptic-integral-first-kind-K subscript 𝑘 1 {\displaystyle{\displaystyle K\left(k\right)=(1+k_{1})K\left(k_{1}\right)}}
\compellintKk@{k} = (1+k_{1})\compellintKk@{k_{1}}

EllipticK(k) = (1 + k[1])*EllipticK(k[1])
EllipticK[(k)^2] == (1 + Subscript[k, 1])*EllipticK[(Subscript[k, 1])^2]
Failure Failure Error
Failed [30 / 30]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.44075376931664, -1.6191557371087932]
Test Values: {Rule[k, 2], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex9 E ( k ) = ( 1 + k ) E ( k 1 ) - k K ( k ) complete-elliptic-integral-second-kind-E 𝑘 1 superscript 𝑘 complete-elliptic-integral-second-kind-E subscript 𝑘 1 superscript 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle E\left(k\right)=(1+k^{\prime})E\left(k_{1}\right)% -k^{\prime}K\left(k\right)}}
\compellintEk@{k} = (1+k^{\prime})\compellintEk@{k_{1}}-k^{\prime}\compellintKk@{k}

EllipticE(k) = (1 +sqrt(1 - (k)^(2)))*EllipticE(k[1])-sqrt(1 - (k)^(2))*EllipticK(k)
EllipticE[(k)^2] == (1 +Sqrt[1 - (k)^(2)])*EllipticE[(Subscript[k, 1])^2]-Sqrt[1 - (k)^(2)]*EllipticK[(k)^2]
Failure Failure Error
Failed [30 / 30]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.595329372049606, 0.2521613076710463]
Test Values: {Rule[k, 2], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex10 F ( ϕ , k ) = 1 2 ( 1 + k 1 ) F ( ϕ 1 , k 1 ) elliptic-integral-first-kind-F italic-ϕ 𝑘 1 2 1 subscript 𝑘 1 elliptic-integral-first-kind-F subscript italic-ϕ 1 subscript 𝑘 1 {\displaystyle{\displaystyle F\left(\phi,k\right)=\tfrac{1}{2}(1+k_{1})F\left(% \phi_{1},k_{1}\right)}}
\incellintFk@{\phi}{k} = \tfrac{1}{2}(1+k_{1})\incellintFk@{\phi_{1}}{k_{1}}

EllipticF(sin(phi), k) = (1)/(2)*(1 + k[1])*EllipticF(sin(phi + arctan(sqrt(1 - (k)^(2))*tan(phi))), k[1])
EllipticF[\[Phi], (k)^2] == Divide[1,2]*(1 + Subscript[k, 1])*EllipticF[\[Phi]+ ArcTan[Sqrt[1 - (k)^(2)]*Tan[\[Phi]]], (Subscript[k, 1])^2]
Failure Failure
Failed [300 / 300]
Result: .2591790565-.226164263e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .8581261265-.11942686e-2*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.15619877563526813, 0.03685530383845256]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.6672885103059906, -0.24203301849204312]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex11 E ( ϕ , k ) = 1 2 ( 1 + k ) E ( ϕ 1 , k 1 ) - k F ( ϕ , k ) + 1 2 ( 1 - k ) sin ϕ 1 elliptic-integral-second-kind-E italic-ϕ 𝑘 1 2 1 superscript 𝑘 elliptic-integral-second-kind-E subscript italic-ϕ 1 subscript 𝑘 1 superscript 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 1 2 1 superscript 𝑘 subscript italic-ϕ 1 {\displaystyle{\displaystyle E\left(\phi,k\right)=\tfrac{1}{2}(1+k^{\prime})E% \left(\phi_{1},k_{1}\right)-k^{\prime}F\left(\phi,k\right)+\tfrac{1}{2}(1-k^{% \prime})\sin\phi_{1}}}
\incellintEk@{\phi}{k} = \tfrac{1}{2}(1+k^{\prime})\incellintEk@{\phi_{1}}{k_{1}}-k^{\prime}\incellintFk@{\phi}{k}+\tfrac{1}{2}(1-k^{\prime})\sin@@{\phi_{1}}

EllipticE(sin(phi), k) = (1)/(2)*(1 +sqrt(1 - (k)^(2)))*EllipticE(sin(phi + arctan(sqrt(1 - (k)^(2))*tan(phi))), k[1])-sqrt(1 - (k)^(2))*EllipticF(sin(phi), k)+(1)/(2)*(1 -sqrt(1 - (k)^(2)))*sin(phi + arctan(sqrt(1 - (k)^(2))*tan(phi)))
EllipticE[\[Phi], (k)^2] == Divide[1,2]*(1 +Sqrt[1 - (k)^(2)])*EllipticE[\[Phi]+ ArcTan[Sqrt[1 - (k)^(2)]*Tan[\[Phi]]], (Subscript[k, 1])^2]-Sqrt[1 - (k)^(2)]*EllipticF[\[Phi], (k)^2]+Divide[1,2]*(1 -Sqrt[1 - (k)^(2)])*Sin[\[Phi]+ ArcTan[Sqrt[1 - (k)^(2)]*Tan[\[Phi]]]]
Failure Failure
Failed [300 / 300]
Result: -.627821156e-1-.413169945e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .886069620e-1-.4575597e-3*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.0022565574667213206, -0.009009769525654576]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.11756483394447081, -0.05872123913100852]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8.E14 2 ( k 2 - α 2 ) Π ( ϕ , α 2 , k ) = ω 2 - α 2 1 + k Π ( ϕ 1 , α 1 2 , k 1 ) + k 2 F ( ϕ , k ) - ( 1 + k ) α 1 2 R C ( c 1 , c 1 - α 1 2 ) 2 superscript 𝑘 2 superscript 𝛼 2 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 superscript 𝜔 2 superscript 𝛼 2 1 superscript 𝑘 elliptic-integral-third-kind-Pi subscript italic-ϕ 1 superscript subscript 𝛼 1 2 subscript 𝑘 1 superscript 𝑘 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 1 superscript 𝑘 superscript subscript 𝛼 1 2 Carlson-integral-RC subscript 𝑐 1 subscript 𝑐 1 superscript subscript 𝛼 1 2 {\displaystyle{\displaystyle 2(k^{2}-\alpha^{2})\Pi\left(\phi,\alpha^{2},k% \right)=\frac{\omega^{2}-\alpha^{2}}{1+k^{\prime}}\Pi\left(\phi_{1},\alpha_{1}% ^{2},k_{1}\right)+k^{2}F\left(\phi,k\right)-{(1+k^{\prime})\alpha_{1}^{2}R_{C}% \left(c_{1},c_{1}-\alpha_{1}^{2}\right)}}}
2(k^{2}-\alpha^{2})\incellintPik@{\phi}{\alpha^{2}}{k} = \frac{\omega^{2}-\alpha^{2}}{1+k^{\prime}}\incellintPik@{\phi_{1}}{\alpha_{1}^{2}}{k_{1}}+k^{2}\incellintFk@{\phi}{k}-{(1+k^{\prime})\alpha_{1}^{2}\CarlsonellintRC@{c_{1}}{c_{1}-\alpha_{1}^{2}}}

Error
2*((k)^(2)- \[Alpha]^(2))*EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == Divide[\[Omega]^(2)- \[Alpha]^(2),1 +Sqrt[1 - (k)^(2)]]*EllipticPi[(Subscript[\[Alpha], 1])^(2), \[Phi]+ ArcTan[Sqrt[1 - (k)^(2)]*Tan[\[Phi]]],(Subscript[k, 1])^2]+ (k)^(2)* EllipticF[\[Phi], (k)^2]-(1 +Sqrt[1 - (k)^(2)])*(Subscript[\[Alpha], 1])^(2)*1/Sqrt[((Csc[Subscript[\[Phi], 1]])^(2))- (Subscript[\[Alpha], 1])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((Csc[Subscript[\[Phi], 1]])^(2))/(((Csc[Subscript[\[Phi], 1]])^(2))- (Subscript[\[Alpha], 1])^(2))]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Complex[-1.4115811709537147, -1.2227387134851169]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[α, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.5976966939439394, -1.230515427208163]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[α, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex17 F ( ϕ , k ) = 2 1 + k F ( ϕ 2 , k 2 ) elliptic-integral-first-kind-F italic-ϕ 𝑘 2 1 𝑘 elliptic-integral-first-kind-F subscript italic-ϕ 2 subscript 𝑘 2 {\displaystyle{\displaystyle F\left(\phi,k\right)=\frac{2}{1+k}F\left(\phi_{2}% ,k_{2}\right)}}
\incellintFk@{\phi}{k} = \frac{2}{1+k}\incellintFk@{\phi_{2}}{k_{2}}

EllipticF(sin(phi), k) = (2)/(1 + k)*EllipticF(sin(phi[2]), k[2])
EllipticF[\[Phi], (k)^2] == Divide[2,1 + k]*EllipticF[Subscript[\[Phi], 2], (Subscript[k, 2])^2]
Failure Failure
Failed [300 / 300]
Result: .716161018e-1+.1278882161*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.163142760e-1+.3519262665*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.0030858847214221274, 0.01883659064247678]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.11075679050380455, 0.16335572999260056]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex18 E ( ϕ , k ) = ( 1 + k ) E ( ϕ 2 , k 2 ) + ( 1 - k ) F ( ϕ 2 , k 2 ) - k sin ϕ elliptic-integral-second-kind-E italic-ϕ 𝑘 1 𝑘 elliptic-integral-second-kind-E subscript italic-ϕ 2 subscript 𝑘 2 1 𝑘 elliptic-integral-first-kind-F subscript italic-ϕ 2 subscript 𝑘 2 𝑘 italic-ϕ {\displaystyle{\displaystyle E\left(\phi,k\right)=(1+k)E\left(\phi_{2},k_{2}% \right)+(1-k)F\left(\phi_{2},k_{2}\right)-k\sin\phi}}
\incellintEk@{\phi}{k} = (1+k)\incellintEk@{\phi_{2}}{k_{2}}+(1-k)\incellintFk@{\phi_{2}}{k_{2}}-k\sin@@{\phi}

EllipticE(sin(phi), k) = (1 + k)*EllipticE(sin(phi[2]), k[2])+(1 - k)*EllipticF(sin(phi[2]), k[2])- k*sin(phi)
EllipticE[\[Phi], (k)^2] == (1 + k)*EllipticE[Subscript[\[Phi], 2], (Subscript[k, 2])^2]+(1 - k)*EllipticF[Subscript[\[Phi], 2], (Subscript[k, 2])^2]- k*Sin[\[Phi]]
Failure Failure
Failed [300 / 300]
Result: -.251128463-.1652679776*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .549972877-.903450862e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k[2] = 1/2*3^(1/2)+1/2*I, phi[2] = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.009026229866885283, -0.03603907810261833]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.42447097038130677, 0.1345883883024661]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ϕ, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex22 F ( ϕ , k ) = ( 1 + k 1 ) F ( ψ 1 , k 1 ) elliptic-integral-first-kind-F italic-ϕ 𝑘 1 subscript 𝑘 1 elliptic-integral-first-kind-F subscript 𝜓 1 subscript 𝑘 1 {\displaystyle{\displaystyle F\left(\phi,k\right)=(1+k_{1})F\left(\psi_{1},k_{% 1}\right)}}
\incellintFk@{\phi}{k} = (1+k_{1})\incellintFk@{\psi_{1}}{k_{1}}

EllipticF(sin(phi), k) = (1 + k[1])*EllipticF(sin(psi[1]), k[1])
EllipticF[\[Phi], (k)^2] == (1 + Subscript[k, 1])*EllipticF[Subscript[\[Psi], 1], (Subscript[k, 1])^2]
Failure Failure
Failed [299 / 300]
Result: -.3025119160-.7226109033*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.6401936029-.6817361311*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [299 / 300]
Result: Complex[-0.11940620612760577, -0.19771875715838422]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.15464125790413003, -0.13739720920586462]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8#Ex23 E ( ϕ , k ) = ( 1 + k ) E ( ψ 1 , k 1 ) - k F ( ϕ , k ) + ( 1 - Δ ) cot ϕ elliptic-integral-second-kind-E italic-ϕ 𝑘 1 superscript 𝑘 elliptic-integral-second-kind-E subscript 𝜓 1 subscript 𝑘 1 superscript 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 1 Δ italic-ϕ {\displaystyle{\displaystyle E\left(\phi,k\right)=(1+k^{\prime})E\left(\psi_{1% },k_{1}\right)-k^{\prime}F\left(\phi,k\right)+(1-\Delta)\cot\phi}}
\incellintEk@{\phi}{k} = (1+k^{\prime})\incellintEk@{\psi_{1}}{k_{1}}-k^{\prime}\incellintFk@{\phi}{k}+(1-\Delta)\cot@@{\phi}

EllipticE(sin(phi), k) = (1 +sqrt(1 - (k)^(2)))*EllipticE(sin(psi[1]), k[1])-sqrt(1 - (k)^(2))*EllipticF(sin(phi), k)+(1 -(sqrt(1 - (k)^(2)* (sin(phi))^(2))))*cot(phi)
EllipticE[\[Phi], (k)^2] == (1 +Sqrt[1 - (k)^(2)])*EllipticE[Subscript[\[Psi], 1], (Subscript[k, 1])^2]-Sqrt[1 - (k)^(2)]*EllipticF[\[Phi], (k)^2]+(1 -(Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]))*Cot[\[Phi]]
Failure Failure
Failed [300 / 300]
Result: -.5555013192-.1267358774*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -1.589246368-2.046785663*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k[1] = 1/2*3^(1/2)+1/2*I, psi[1] = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.22091089534718378, -0.1170454776590783]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.9299237807056446, -0.7272990802320405]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[k, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[ψ, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.8.E20 ρ Π ( ϕ , α 2 , k ) = 4 1 + k Π ( ψ 1 , α 1 2 , k 1 ) + ( ρ - 1 ) F ( ϕ , k ) - R C ( c - 1 , c - α 2 ) 𝜌 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 4 1 superscript 𝑘 elliptic-integral-third-kind-Pi subscript 𝜓 1 superscript subscript 𝛼 1 2 subscript 𝑘 1 𝜌 1 elliptic-integral-first-kind-F italic-ϕ 𝑘 Carlson-integral-RC 𝑐 1 𝑐 superscript 𝛼 2 {\displaystyle{\displaystyle\rho\Pi\left(\phi,\alpha^{2},k\right)=\frac{4}{1+k% ^{\prime}}\Pi\left(\psi_{1},\alpha_{1}^{2},k_{1}\right)+(\rho-1)F\left(\phi,k% \right)-R_{C}\left(c-1,c-\alpha^{2}\right)}}
\rho\incellintPik@{\phi}{\alpha^{2}}{k} = \frac{4}{1+k^{\prime}}\incellintPik@{\psi_{1}}{\alpha_{1}^{2}}{k_{1}}+(\rho-1)\incellintFk@{\phi}{k}-\CarlsonellintRC@{c-1}{c-\alpha^{2}}

Error
\[Rho]*EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == Divide[4,1 +Sqrt[1 - (k)^(2)]]*EllipticPi[(Subscript[\[Alpha], 1])^(2), Subscript[\[Psi], 1],(Subscript[k, 1])^2]+(\[Rho]- 1)*EllipticF[\[Phi], (k)^2]- 1/Sqrt[((Csc[\[Phi]])^(2))- \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(((Csc[\[Phi]])^(2))- 1)/(((Csc[\[Phi]])^(2))- \[Alpha]^(2))]
Missing Macro Error Failure - Skipped - Because timed out
19.9#Ex1 ln 4 K ( k ) + ln k 4 complete-elliptic-integral-first-kind-K 𝑘 superscript 𝑘 {\displaystyle{\displaystyle\ln 4\leq K\left(k\right)+\ln k^{\prime}}}
\ln@@{4} \leq \compellintKk@{k}+\ln@@{k^{\prime}}

ln(4) <= EllipticK(k)+ ln(sqrt(1 - (k)^(2)))
Log[4] <= EllipticK[(k)^2]+ Log[Sqrt[1 - (k)^(2)]]
Failure Failure Error
Failed [3 / 3]
Result: LessEqual[1.3862943611198906, Indeterminate]
Test Values: {Rule[k, 1]}

Result: LessEqual[1.3862943611198906, Complex[1.392181321740353, 0.49253850304507485]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9#Ex1 K ( k ) + ln k π / 2 complete-elliptic-integral-first-kind-K 𝑘 superscript 𝑘 𝜋 2 {\displaystyle{\displaystyle K\left(k\right)+\ln k^{\prime}\leq\pi/2}}
\compellintKk@{k}+\ln@@{k^{\prime}} \leq \pi/2

EllipticK(k)+ ln(sqrt(1 - (k)^(2))) <= Pi/2
EllipticK[(k)^2]+ Log[Sqrt[1 - (k)^(2)]] <= Pi/2
Failure Failure Error
Failed [3 / 3]
Result: LessEqual[Indeterminate, 1.5707963267948966]
Test Values: {Rule[k, 1]}

Result: LessEqual[Complex[1.392181321740353, 0.49253850304507485], 1.5707963267948966]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9#Ex2 1 E ( k ) 1 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle 1\leq E\left(k\right)}}
1 \leq \compellintEk@{k}

1 <= EllipticE(k)
1 <= EllipticE[(k)^2]
Failure Failure Successful [Tested: 3]
Failed [2 / 3]
Result: LessEqual[1.0, Complex[0.40629888645996043, 1.343854231387098]]
Test Values: {Rule[k, 2]}

Result: LessEqual[1.0, Complex[0.2655964076372759, 2.498348127732516]]
Test Values: {Rule[k, 3]}

19.9#Ex2 E ( k ) π / 2 complete-elliptic-integral-second-kind-E 𝑘 𝜋 2 {\displaystyle{\displaystyle E\left(k\right)\leq\pi/2}}
\compellintEk@{k} \leq \pi/2

EllipticE(k) <= Pi/2
EllipticE[(k)^2] <= Pi/2
Failure Failure Successful [Tested: 3]
Failed [2 / 3]
Result: LessEqual[Complex[0.40629888645996043, 1.343854231387098], 1.5707963267948966]
Test Values: {Rule[k, 2]}

Result: LessEqual[Complex[0.2655964076372759, 2.498348127732516], 1.5707963267948966]
Test Values: {Rule[k, 3]}

19.9#Ex3 1 ( 2 / π ) 1 - α 2 Π ( α 2 , k ) 1 / k 1 2 𝜋 1 superscript 𝛼 2 complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 1 superscript 𝑘 {\displaystyle{\displaystyle 1\leq(2/\pi)\sqrt{1-\alpha^{2}}\Pi\left(\alpha^{2% },k\right)\leq 1/k^{\prime}}}
1 \leq (2/\pi)\sqrt{1-\alpha^{2}}\compellintPik@{\alpha^{2}}{k}\leq 1/k^{\prime}
α 2 < 1 superscript 𝛼 2 1 {\displaystyle{\displaystyle\alpha^{2}<1}}
1 <= (2/Pi)*sqrt(1 - (alpha)^(2))*EllipticPi((alpha)^(2), k) <= 1/(sqrt(1 - (k)^(2)))
1 <= (2/Pi)*Sqrt[1 - \[Alpha]^(2)]*EllipticPi[\[Alpha]^(2), (k)^2] <= 1/(Sqrt[1 - (k)^(2)])
Failure Failure Error
Failed [3 / 3]
Result: LessEqual[1.0, DirectedInfinity[], DirectedInfinity[]]
Test Values: {Rule[k, 1], Rule[α, 0.5]}

Result: LessEqual[1.0, Complex[0.4804983499812288, -0.6957733039705274], Complex[0.0, -0.5773502691896258]]
Test Values: {Rule[k, 2], Rule[α, 0.5]}

... skip entries to safe data
19.9.E2 1 + k 2 8 < K ( k ) ln ( 4 / k ) 1 superscript superscript 𝑘 2 8 complete-elliptic-integral-first-kind-K 𝑘 4 superscript 𝑘 {\displaystyle{\displaystyle 1+\frac{{k^{\prime}}^{2}}{8}<\frac{K\left(k\right% )}{\ln\left(4/k^{\prime}\right)}}}
1+\frac{{k^{\prime}}^{2}}{8} < \frac{\compellintKk@{k}}{\ln@{4/k^{\prime}}}

1 +(1 - (k)^(2))/(8) < (EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2)))))
1 +Divide[1 - (k)^(2),8] < Divide[EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]]
Failure Failure Error
Failed [3 / 3]
Result: Less[1.0, Indeterminate]
Test Values: {Rule[k, 1]}

Result: Less[0.625, Complex[0.7573351019929213, 0.13305010797062605]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E2 K ( k ) ln ( 4 / k ) < 1 + k 2 4 complete-elliptic-integral-first-kind-K 𝑘 4 superscript 𝑘 1 superscript superscript 𝑘 2 4 {\displaystyle{\displaystyle\frac{K\left(k\right)}{\ln\left(4/k^{\prime}\right% )}<1+\frac{{k^{\prime}}^{2}}{4}}}
\frac{\compellintKk@{k}}{\ln@{4/k^{\prime}}} < 1+\frac{{k^{\prime}}^{2}}{4}

(EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) < 1 +(1 - (k)^(2))/(4)
Divide[EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] < 1 +Divide[1 - (k)^(2),4]
Failure Failure Error
Failed [3 / 3]
Result: Less[Indeterminate, 1.0]
Test Values: {Rule[k, 1]}

Result: Less[Complex[0.7573351019929213, 0.13305010797062605], 0.25]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E3 9 + k 2 k 2 8 < ( 8 + k 2 ) K ( k ) ln ( 4 / k ) 9 superscript 𝑘 2 superscript superscript 𝑘 2 8 8 superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 4 superscript 𝑘 {\displaystyle{\displaystyle 9+\frac{k^{2}{k^{\prime}}^{2}}{8}<\frac{(8+k^{2})% K\left(k\right)}{\ln\left(4/k^{\prime}\right)}}}
9+\frac{k^{2}{k^{\prime}}^{2}}{8} < \frac{(8+k^{2})\compellintKk@{k}}{\ln@{4/k^{\prime}}}

9 +((k)^(2)*1 - (k)^(2))/(8) < ((8 + (k)^(2))*EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2)))))
9 +Divide[(k)^(2)*1 - (k)^(2),8] < Divide[(8 + (k)^(2))*EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]]
Failure Failure Error
Failed [3 / 3]
Result: Less[9.0, Indeterminate]
Test Values: {Rule[k, 1]}

Result: Less[9.0, Complex[9.088021223915057, 1.5966012956475137]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E3 ( 8 + k 2 ) K ( k ) ln ( 4 / k ) < 9.096 8 superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 4 superscript 𝑘 9.096 {\displaystyle{\displaystyle\frac{(8+k^{2})K\left(k\right)}{\ln\left(4/k^{% \prime}\right)}<9.096}}
\frac{(8+k^{2})\compellintKk@{k}}{\ln@{4/k^{\prime}}} < 9.096

((8 + (k)^(2))*EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) < 9.096
Divide[(8 + (k)^(2))*EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] < 9.096
Failure Failure Error
Failed [3 / 3]
Result: Less[Indeterminate, 9.096]
Test Values: {Rule[k, 1]}

Result: Less[Complex[9.088021223915057, 1.5966012956475137], 9.096]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E4 ( 1 + k 3 / 2 2 ) 2 / 3 2 π E ( k ) superscript 1 superscript superscript 𝑘 3 2 2 2 3 2 𝜋 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle\left(\frac{1+{k^{\prime}}^{3/2}}{2}\right)^{2/3}% \leq\frac{2}{\pi}E\left(k\right)}}
\left(\frac{1+{k^{\prime}}^{3/2}}{2}\right)^{2/3} \leq \frac{2}{\pi}\compellintEk@{k}

((1 +(sqrt(1 - (k)^(2)))^(3/2))/(2))^(2/3) <= (2)/(Pi)*EllipticE(k)
(Divide[1 +(Sqrt[1 - (k)^(2)])^(3/2),2])^(2/3) <= Divide[2,Pi]*EllipticE[(k)^2]
Failure Failure Successful [Tested: 3]
Failed [2 / 3]
Result: LessEqual[Complex[0.2518251425072316, 0.8700591952646104], Complex[0.2586579046113418, 0.8555241748808654]]
Test Values: {Rule[k, 2]}

Result: LessEqual[Complex[0.1858923839966674, 1.6059081831429025], Complex[0.16908392457168991, 1.5904978163720476]]
Test Values: {Rule[k, 3]}

19.9.E4 2 π E ( k ) ( 1 + k 2 2 ) 1 / 2 2 𝜋 complete-elliptic-integral-second-kind-E 𝑘 superscript 1 superscript superscript 𝑘 2 2 1 2 {\displaystyle{\displaystyle\frac{2}{\pi}E\left(k\right)\leq\left(\frac{1+{k^{% \prime}}^{2}}{2}\right)^{1/2}}}
\frac{2}{\pi}\compellintEk@{k} \leq \left(\frac{1+{k^{\prime}}^{2}}{2}\right)^{1/2}

(2)/(Pi)*EllipticE(k) <= ((1 +1 - (k)^(2))/(2))^(1/2)
Divide[2,Pi]*EllipticE[(k)^2] <= (Divide[1 +1 - (k)^(2),2])^(1/2)
Failure Failure Successful [Tested: 3]
Failed [2 / 3]
Result: LessEqual[Complex[0.2586579046113418, 0.8555241748808654], Complex[0.0, 1.0]]
Test Values: {Rule[k, 2]}

Result: LessEqual[Complex[0.16908392457168991, 1.5904978163720476], Complex[0.0, 1.8708286933869707]]
Test Values: {Rule[k, 3]}

19.9.E5 ln ( 1 + k ) 2 k < π K ( k ) 2 K ( k ) superscript 1 superscript 𝑘 2 𝑘 𝜋 complementary-complete-elliptic-integral-first-kind-K 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle\ln\frac{(1+\sqrt{k^{\prime}})^{2}}{k}<\frac{\pi{K% ^{\prime}}\left(k\right)}{2K\left(k\right)}}}
\ln@@{\frac{(1+\sqrt{k^{\prime}})^{2}}{k}} < \frac{\pi\ccompellintKk@{k}}{2\compellintKk@{k}}

ln(((1 +sqrt(sqrt(1 - (k)^(2))))^(2))/(k)) < (Pi*EllipticCK(k))/(2*EllipticK(k))
Log[Divide[(1 +Sqrt[Sqrt[1 - (k)^(2)]])^(2),k]] < Divide[Pi*EllipticK[1-(k)^2],2*EllipticK[(k)^2]]
Failure Failure Error
Failed [3 / 3]
Result: False
Test Values: {Rule[k, 1]}

Result: Less[Complex[0.8314429455293103, 0.8983332083070389], Complex[0.762166367418117, 0.9750101446769989]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E5 π K ( k ) 2 K ( k ) < ln 2 ( 1 + k ) k 𝜋 complementary-complete-elliptic-integral-first-kind-K 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 2 1 superscript 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\pi{K^{\prime}}\left(k\right)}{2K\left(k% \right)}<\ln\frac{2(1+k^{\prime})}{k}}}
\frac{\pi\ccompellintKk@{k}}{2\compellintKk@{k}} < \ln@@{\frac{2(1+k^{\prime})}{k}}

(Pi*EllipticCK(k))/(2*EllipticK(k)) < ln((2*(1 +sqrt(1 - (k)^(2))))/(k))
Divide[Pi*EllipticK[1-(k)^2],2*EllipticK[(k)^2]] < Log[Divide[2*(1 +Sqrt[1 - (k)^(2)]),k]]
Failure Failure Error
Failed [2 / 3]
Result: Less[Complex[0.762166367418117, 0.9750101446769989], Complex[0.6931471805599452, 1.0471975511965976]]
Test Values: {Rule[k, 2]}

Result: Less[Complex[0.7130154358988758, 1.1147297033963086], Complex[0.6931471805599453, 1.2309594173407747]]
Test Values: {Rule[k, 3]}

19.9.E6 ( 1 - 3 4 k 2 ) - 1 / 2 < 4 π k 2 ( K ( k ) - E ( k ) ) superscript 1 3 4 superscript 𝑘 2 1 2 4 𝜋 superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle(1-\tfrac{3}{4}k^{2})^{-1/2}<\frac{4}{\pi k^{2}}(K% \left(k\right)-E\left(k\right))}}
(1-\tfrac{3}{4}k^{2})^{-1/2} < \frac{4}{\pi k^{2}}(\compellintKk@{k}-\compellintEk@{k})

(1 -(3)/(4)*(k)^(2))^(- 1/2) < (4)/(Pi*(k)^(2))*(EllipticK(k)- EllipticE(k))
(1 -Divide[3,4]*(k)^(2))^(- 1/2) < Divide[4,Pi*(k)^(2)]*(EllipticK[(k)^2]- EllipticE[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Less[2.0, DirectedInfinity[]]
Test Values: {Rule[k, 1]}

Result: Less[Complex[0.0, -0.7071067811865475], Complex[0.13896654948167025, -0.7709822125950203]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E6 4 π k 2 ( K ( k ) - E ( k ) ) < ( k ) - 3 / 4 4 𝜋 superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 3 4 {\displaystyle{\displaystyle\frac{4}{\pi k^{2}}(K\left(k\right)-E\left(k\right% ))<(k^{\prime})^{-3/4}}}
\frac{4}{\pi k^{2}}(\compellintKk@{k}-\compellintEk@{k}) < (k^{\prime})^{-3/4}

(4)/(Pi*(k)^(2))*(EllipticK(k)- EllipticE(k)) < (sqrt(1 - (k)^(2)))^(- 3/4)
Divide[4,Pi*(k)^(2)]*(EllipticK[(k)^2]- EllipticE[(k)^2]) < (Sqrt[1 - (k)^(2)])^(- 3/4)
Failure Failure Error
Failed [3 / 3]
Result: Less[DirectedInfinity[], DirectedInfinity[]]
Test Values: {Rule[k, 1]}

Result: Less[Complex[0.13896654948167025, -0.7709822125950203], Complex[0.2534656958546175, -0.6119203205285516]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E7 ( 1 - 1 4 k 2 ) - 1 / 2 < 4 π k 2 ( E ( k ) - k 2 K ( k ) ) superscript 1 1 4 superscript 𝑘 2 1 2 4 𝜋 superscript 𝑘 2 complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle(1-\tfrac{1}{4}k^{2})^{-1/2}<\frac{4}{\pi k^{2}}(E% \left(k\right)-{k^{\prime}}^{2}K\left(k\right))}}
(1-\tfrac{1}{4}k^{2})^{-1/2} < \frac{4}{\pi k^{2}}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k})

(1 -(1)/(4)*(k)^(2))^(- 1/2) < (4)/(Pi*(k)^(2))*(EllipticE(k)-1 - (k)^(2)*EllipticK(k))
(1 -Divide[1,4]*(k)^(2))^(- 1/2) < Divide[4,Pi*(k)^(2)]*(EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Less[1.1547005383792517, DirectedInfinity[]]
Test Values: {Rule[k, 1]}

Result: Less[DirectedInfinity[], Complex[-1.2621629410274844, 1.800642588058783]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E8 k < E ( k ) K ( k ) superscript 𝑘 complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle k^{\prime}<\frac{E\left(k\right)}{K\left(k\right)% }}}
k^{\prime} < \frac{\compellintEk@{k}}{\compellintKk@{k}}

sqrt(1 - (k)^(2)) < (EllipticE(k))/(EllipticK(k))
Sqrt[1 - (k)^(2)] < Divide[EllipticE[(k)^2],EllipticK[(k)^2]]
Failure Failure Error
Failed [3 / 3]
Result: False
Test Values: {Rule[k, 1]}

Result: Less[Complex[0.0, 1.7320508075688772], Complex[-0.5907718728609501, 0.8386174564999851]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.9.E8 E ( k ) K ( k ) < ( 1 + k 2 ) 2 complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-first-kind-K 𝑘 superscript 1 superscript 𝑘 2 2 {\displaystyle{\displaystyle\frac{E\left(k\right)}{K\left(k\right)}<\left(% \frac{1+k^{\prime}}{2}\right)^{2}}}
\frac{\compellintEk@{k}}{\compellintKk@{k}} < \left(\frac{1+k^{\prime}}{2}\right)^{2}

(EllipticE(k))/(EllipticK(k)) < ((1 +sqrt(1 - (k)^(2)))/(2))^(2)
Divide[EllipticE[(k)^2],EllipticK[(k)^2]] < (Divide[1 +Sqrt[1 - (k)^(2)],2])^(2)
Failure Failure Error
Failed [2 / 3]
Result: Less[Complex[-0.5907718728609501, 0.8386174564999851], Complex[-0.4999999999999999, 0.8660254037844386]]
Test Values: {Rule[k, 2]}

Result: Less[Complex[-1.9604512687154212, 1.5690726247192568], Complex[-1.7500000000000004, 1.4142135623730951]]
Test Values: {Rule[k, 3]}

19.9.E9 L ( a , b ) = 4 a E ( k ) 𝐿 𝑎 𝑏 4 𝑎 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle L(a,b)=4aE\left(k\right)}}
L(a,b) = 4a\compellintEk@{k}
k 2 = 1 - ( b 2 / a 2 ) , a > b formulae-sequence superscript 𝑘 2 1 superscript 𝑏 2 superscript 𝑎 2 𝑎 𝑏 {\displaystyle{\displaystyle k^{2}=1-(b^{2}/a^{2}),a>b}}
L(a , b) = 4*a*EllipticE(k)
L[a , b] == 4*a*EllipticE[(k)^2]
Error Failure - Error
19.9.E11 ϕ F ( ϕ , k ) italic-ϕ elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\phi\leq F\left(\phi,k\right)}}
\phi \leq \incellintFk@{\phi}{k}

phi <= EllipticF(sin(phi), k)
\[Phi] <= EllipticF[\[Phi], (k)^2]
Failure Failure
Failed [4 / 30]
Result: -1.500000000 <= -3.340677542
Test Values: {phi = -3/2, k = 1}

Result: -.5000000000 <= -.5222381033
Test Values: {phi = -1/2, k = 1}

... skip entries to safe data
Failed [28 / 30]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43180375739814203, 0.27142936483528934]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.3965687056216178, 0.33175091278780894]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E12 E ( ϕ , k ) ϕ elliptic-integral-second-kind-E italic-ϕ 𝑘 italic-ϕ {\displaystyle{\displaystyle E\left(\phi,k\right)\leq\phi}}
\incellintEk@{\phi}{k} \leq \phi

EllipticE(sin(phi), k) <= phi
EllipticE[\[Phi], (k)^2] <= \[Phi]
Failure Failure
Failed [4 / 30]
Result: -.9974949866 <= -1.500000000
Test Values: {phi = -3/2, k = 1}

Result: -.4794255386 <= -.5000000000
Test Values: {phi = -1/2, k = 1}

... skip entries to safe data
Failed [27 / 30]
Result: LessEqual[Complex[0.43278851685803155, 0.22929764467344024], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[0.44208095936294645, 0.16535187593702125], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E13 Π ( ϕ , α 2 , 0 ) Π ( ϕ , α 2 , k ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 0 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},0\right)\leq\Pi\left(\phi% ,\alpha^{2},k\right)}}
\incellintPik@{\phi}{\alpha^{2}}{0} \leq \incellintPik@{\phi}{\alpha^{2}}{k}

EllipticPi(sin(phi), (alpha)^(2), 0) <= EllipticPi(sin(phi), (alpha)^(2), k)
EllipticPi[\[Alpha]^(2), \[Phi],(0)^2] <= EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]
Failure Failure
Failed [8 / 90]
Result: -.6351972518 <= -.6692391842
Test Values: {alpha = 3/2, phi = -1/2, k = 1}

Result: -.6351972518 <= -.9273807742
Test Values: {alpha = 3/2, phi = -1/2, k = 2}

... skip entries to safe data
Failed [84 / 90]
Result: LessEqual[Complex[0.4032669574270382, 0.3492210121777662], Complex[0.39392267303966433, 0.37152709024037445]]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[0.4032669574270382, 0.3492210121777662], Complex[0.33490711362096304, 0.4200642464932446]]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E14 3 1 + Δ + cos ϕ < F ( ϕ , k ) sin ϕ 3 1 Δ italic-ϕ elliptic-integral-first-kind-F italic-ϕ 𝑘 italic-ϕ {\displaystyle{\displaystyle\frac{3}{1+\Delta+\cos\phi}<\frac{F\left(\phi,k% \right)}{\sin\phi}}}
\frac{3}{1+\Delta+\cos@@{\phi}} < \frac{\incellintFk@{\phi}{k}}{\sin@@{\phi}}

(3)/(1 + Delta + cos(phi)) < (EllipticF(sin(phi), k))/(sin(phi))
Divide[3,1 + \[CapitalDelta]+ Cos[\[Phi]]] < Divide[EllipticF[\[Phi], (k)^2],Sin[\[Phi]]]
Failure Failure
Failed [16 / 300]
Result: 7.945282179 < 1.089299717
Test Values: {Delta = -3/2, phi = -1/2, k = 1}

Result: 7.945282179 < 1.412977582
Test Values: {Delta = -3/2, phi = -1/2, k = 2}

... skip entries to safe data
Failed [284 / 300]
Result: Less[Complex[1.261572446843062, -0.07667841479591199], Complex[1.0384958486950706, 0.07695378095553612]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Less[Complex[1.261572446843062, -0.07667841479591199], Complex[1.0325857379409573, 0.21946385233164167]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E14 F ( ϕ , k ) sin ϕ < 1 ( Δ cos ϕ ) 1 / 3 elliptic-integral-first-kind-F italic-ϕ 𝑘 italic-ϕ 1 superscript Δ italic-ϕ 1 3 {\displaystyle{\displaystyle\frac{F\left(\phi,k\right)}{\sin\phi}<\frac{1}{(% \Delta\cos\phi)^{1/3}}}}
\frac{\incellintFk@{\phi}{k}}{\sin@@{\phi}} < \frac{1}{(\Delta\cos@@{\phi})^{1/3}}

(EllipticF(sin(phi), k))/(sin(phi)) < (1)/((Delta*cos(phi))^(1/3))
Divide[EllipticF[\[Phi], (k)^2],Sin[\[Phi]]] < Divide[1,(\[CapitalDelta]*Cos[\[Phi]])^(1/3)]
Failure Failure
Failed [20 / 300]
Result: 1.675417084 < 1.170093898
Test Values: {Delta = -3/2, phi = -2, k = 1}

Result: 1.675417084 < 1.170093898
Test Values: {Delta = -3/2, phi = 2, k = 1}

... skip entries to safe data
Failed [298 / 300]
Result: Less[Complex[1.0384958486950706, 0.07695378095553612], Complex[1.2731409874856745, -0.17545913345292982]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Less[Complex[1.0325857379409573, 0.21946385233164167], Complex[1.2731409874856745, -0.17545913345292982]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E15 1 < F ( ϕ , k ) / ( ( sin ϕ ) ln ( 4 Δ + cos ϕ ) ) 1 elliptic-integral-first-kind-F italic-ϕ 𝑘 italic-ϕ 4 Δ italic-ϕ {\displaystyle{\displaystyle 1<F\left(\phi,k\right)\bigg{/}\left((\sin\phi)\ln% \left(\frac{4}{\Delta+\cos\phi}\right)\right)}}
1 < \incellintFk@{\phi}{k}\bigg{/}\left((\sin@@{\phi})\ln@{\frac{4}{\Delta+\cos@@{\phi}}}\right)

1 < EllipticF(sin(phi), k)/((sin(phi))*ln((4)/(Delta + cos(phi))))
1 < EllipticF[\[Phi], (k)^2]/((Sin[\[Phi]])*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]])
Failure Failure
Failed [6 / 300]
Result: 1. < .4615167558
Test Values: {Delta = -1/2, phi = -1/2, k = 1}

Result: 1. < .5986532627
Test Values: {Delta = -1/2, phi = -1/2, k = 2}

... skip entries to safe data
Failed [288 / 300]
Result: Less[1.0, Complex[0.9573719244599448, 0.16621131448588694]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Less[1.0, Complex[0.9388814261604885, 0.2980132161872323]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E15 F ( ϕ , k ) / ( ( sin ϕ ) ln ( 4 Δ + cos ϕ ) ) < 4 2 + ( 1 + k 2 ) sin 2 ϕ elliptic-integral-first-kind-F italic-ϕ 𝑘 italic-ϕ 4 Δ italic-ϕ 4 2 1 superscript 𝑘 2 2 italic-ϕ {\displaystyle{\displaystyle F\left(\phi,k\right)\bigg{/}\left((\sin\phi)\ln% \left(\frac{4}{\Delta+\cos\phi}\right)\right)<\frac{4}{2+(1+k^{2}){\sin^{2}}% \phi}}}
\incellintFk@{\phi}{k}\bigg{/}\left((\sin@@{\phi})\ln@{\frac{4}{\Delta+\cos@@{\phi}}}\right) < \frac{4}{2+(1+k^{2})\sin^{2}@@{\phi}}

EllipticF(sin(phi), k)/((sin(phi))*ln((4)/(Delta + cos(phi)))) < (4)/(2 +(1 + (k)^(2))*(sin(phi))^(2))
EllipticF[\[Phi], (k)^2]/((Sin[\[Phi]])*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]) < Divide[4,2 +(1 + (k)^(2))*(Sin[\[Phi]])^(2)]
Failure Failure
Failed [20 / 300]
Result: 3.582850518 < 1.002508151
Test Values: {Delta = 3/2, phi = -3/2, k = 1}

Result: 3.582850518 < 1.002508151
Test Values: {Delta = 3/2, phi = 3/2, k = 1}

... skip entries to safe data
Failed [296 / 300]
Result: Less[Complex[0.9573719244599448, 0.16621131448588694], Complex[1.7102149955099495, -0.29913282294542826]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Less[Complex[0.9388814261604885, 0.2980132161872323], Complex[1.3149325512421652, -0.4880625346303866]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E16 F ( ϕ , k ) = 2 π K ( k ) ln ( 4 Δ + cos ϕ ) - θ Δ 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 2 𝜋 complete-elliptic-integral-first-kind-K superscript 𝑘 4 Δ italic-ϕ 𝜃 superscript Δ 2 {\displaystyle{\displaystyle F\left(\phi,k\right)=\frac{2}{\pi}K\left(k^{% \prime}\right)\ln\left(\frac{4}{\Delta+\cos\phi}\right)-\theta\Delta^{2}}}
\incellintFk@{\phi}{k} = \frac{2}{\pi}\compellintKk@{k^{\prime}}\ln@{\frac{4}{\Delta+\cos@@{\phi}}}-\theta\Delta^{2}
( sin ϕ ) / 8 < θ , θ < ( ln 2 ) / ( k 2 sin ϕ ) formulae-sequence italic-ϕ 8 𝜃 𝜃 2 superscript 𝑘 2 italic-ϕ {\displaystyle{\displaystyle(\sin\phi)/8<\theta,\theta<(\ln 2)/(k^{2}\sin\phi)}}
EllipticF(sin(phi), k) = (2)/(Pi)*EllipticK(sqrt(1 - (k)^(2)))*ln((4)/(Delta + cos(phi)))- theta*(Delta)^(2)
EllipticF[\[Phi], (k)^2] == Divide[2,Pi]*EllipticK[(Sqrt[1 - (k)^(2)])^2]*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]- \[Theta]*\[CapitalDelta]^(2)
Failure Failure
Failed [30 / 30]
Result: 2.264395299+.9232968251*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 3/2, theta = 1/2, k = 1}

Result: -.185868314e-1+.7122804653*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2, theta = 1/2, k = 1}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[1.4412941413043292, 0.5689187621917111]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, 0.5], Rule[ϕ, 1.5]}

Result: Complex[-0.5132046492108906, 0.2967418012807382]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, 0.5], Rule[ϕ, 0.5]}

... skip entries to safe data
19.9.E17 L F ( ϕ , k ) 𝐿 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle L\leq F\left(\phi,k\right)}}
L \leq \incellintFk@{\phi}{k}

L <= EllipticF(sin(phi), k)
L <= EllipticF[\[Phi], (k)^2]
Failure Failure
Failed [24 / 300]
Result: -1.500000000 <= -3.340677542
Test Values: {L = -3/2, phi = -3/2, k = 1}

Result: -1.500000000 <= -1.523452443
Test Values: {L = -3/2, phi = -2, k = 1}

... skip entries to safe data
Failed [288 / 300]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43180375739814203, 0.27142936483528934]]
Test Values: {Rule[k, 1], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.3965687056216178, 0.33175091278780894]]
Test Values: {Rule[k, 2], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E17 F ( ϕ , k ) U L elliptic-integral-first-kind-F italic-ϕ 𝑘 𝑈 𝐿 {\displaystyle{\displaystyle F\left(\phi,k\right)\leq\sqrt{UL}}}
\incellintFk@{\phi}{k} \leq \sqrt{UL}

EllipticF(sin(phi), k) <= sqrt(U*L)
EllipticF[\[Phi], (k)^2] <= Sqrt[U*L]
Failure Failure Successful [Tested: 300]
Failed [300 / 300]
Result: LessEqual[Complex[0.43180375739814203, 0.27142936483528934], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 1], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[0.3965687056216178, 0.33175091278780894], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 2], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.9.E17 U L 1 2 ( U + L ) 𝑈 𝐿 1 2 𝑈 𝐿 {\displaystyle{\displaystyle\sqrt{UL}\leq\tfrac{1}{2}(U+L)}}
\sqrt{UL} \leq \tfrac{1}{2}(U+L)

sqrt(U*L) <= (1)/(2)*(U + L)
Sqrt[U*L] <= Divide[1,2]*(U + L)
Failure Failure
Failed [9 / 100]
Result: 1.500000000 <= -1.500000000
Test Values: {L = -3/2, U = -3/2}

Result: .8660254040 <= -1.
Test Values: {L = -3/2, U = -1/2}

... skip entries to safe data
Failed [91 / 100]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[0.12940952255126037, 0.48296291314453416], Complex[0.09150635094610973, 0.34150635094610965]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.9.E17 1 2 ( U + L ) U 1 2 𝑈 𝐿 𝑈 {\displaystyle{\displaystyle\tfrac{1}{2}(U+L)\leq U}}
\tfrac{1}{2}(U+L) \leq U

(1)/(2)*(U + L) <= U
Divide[1,2]*(U + L) <= U
Failure Failure
Failed [15 / 100]
Result: -1.750000000 <= -2.
Test Values: {L = -3/2, U = -2}

Result: 0. <= -1.500000000
Test Values: {L = 3/2, U = -3/2}

... skip entries to safe data
Failed [79 / 100]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[0.09150635094610973, 0.34150635094610965], Complex[-0.2499999999999999, 0.43301270189221935]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.9#Ex4 L = ( 1 / σ ) arctanh ( σ sin ϕ ) 𝐿 1 𝜎 hyperbolic-inverse-tangent 𝜎 italic-ϕ {\displaystyle{\displaystyle L=(1/\sigma)\operatorname{arctanh}\left(\sigma% \sin\phi\right)}}
L = (1/\sigma)\atanh@{\sigma\sin@@{\phi}}
σ = ( 1 + k 2 ) / 2 𝜎 1 superscript 𝑘 2 2 {\displaystyle{\displaystyle\sigma=\sqrt{(1+k^{2})/2}}}
L = (1/sigma)*arctanh(sigma*sin(phi))
L == (1/\[Sigma])*ArcTanh[\[Sigma]*Sin[\[Phi]]]
Failure Failure
Failed [300 / 300]
Result: .1841715885+.458206673e-1*I
Test Values: {L = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I}

Result: -.197696883e-1+.4084290873*I
Test Values: {L = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, sigma = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.008169183554908921, 0.015254361571334585]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[σ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.6990489693230986, -0.19299436497537428]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[σ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.9#Ex5 U = 1 2 arctanh ( sin ϕ ) + 1 2 k - 1 arctanh ( k sin ϕ ) 𝑈 1 2 hyperbolic-inverse-tangent italic-ϕ 1 2 superscript 𝑘 1 hyperbolic-inverse-tangent 𝑘 italic-ϕ {\displaystyle{\displaystyle U=\tfrac{1}{2}\operatorname{arctanh}\left(\sin% \phi\right)+\tfrac{1}{2}k^{-1}\operatorname{arctanh}\left(k\sin\phi\right)}}
U = \tfrac{1}{2}\atanh@{\sin@@{\phi}}+\tfrac{1}{2}k^{-1}\atanh@{k\sin@@{\phi}}

U = (1)/(2)*arctanh(sin(phi))+(1)/(2)*(k)^(- 1)* arctanh(k*sin(phi))
U == Divide[1,2]*ArcTanh[Sin[\[Phi]]]+Divide[1,2]*(k)^(- 1)* ArcTanh[k*Sin[\[Phi]]]
Failure Failure
Failed [300 / 300]
Result: .451553750e-1-.1773780507*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .3250459090-.1674857034*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.0012089444940770466, -0.021429364835289427]
Test Values: {Rule[k, 1], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.04320077983427789, -0.07655275524887523]
Test Values: {Rule[k, 2], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.10#Ex1 ln ( x / y ) = ( x - y ) R C ( 1 4 ( x + y ) 2 , x y ) 𝑥 𝑦 𝑥 𝑦 Carlson-integral-RC 1 4 superscript 𝑥 𝑦 2 𝑥 𝑦 {\displaystyle{\displaystyle\ln\left(x/y\right)=(x-y)R_{C}\left(\tfrac{1}{4}(x% +y)^{2},xy\right)}}
\ln@{x/y} = (x-y)\CarlsonellintRC@{\tfrac{1}{4}(x+y)^{2}}{xy}

Error
Log[x/y] == (x - y)*1/Sqrt[x*y]*Hypergeometric2F1[1/2,1/2,3/2,1-(Divide[1,4]*(x + y)^(2))/(x*y)]
Missing Macro Error Failure -
Failed [12 / 18]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10#Ex2 arctan ( x / y ) = x R C ( y 2 , y 2 + x 2 ) 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑦 2 superscript 𝑥 2 {\displaystyle{\displaystyle\operatorname{arctan}\left(x/y\right)=xR_{C}\left(% y^{2},y^{2}+x^{2}\right)}}
\atan@{x/y} = x\CarlsonellintRC@{y^{2}}{y^{2}+x^{2}}

Error
ArcTan[x/y] == x*1/Sqrt[(y)^(2)+ (x)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2))/((y)^(2)+ (x)^(2))]
Missing Macro Error Failure -
Failed [9 / 18]
Result: -1.5707963267948966
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: -2.498091544796509
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.10#Ex3 arctanh ( x / y ) = x R C ( y 2 , y 2 - x 2 ) hyperbolic-inverse-tangent 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑦 2 superscript 𝑥 2 {\displaystyle{\displaystyle\operatorname{arctanh}\left(x/y\right)=xR_{C}\left% (y^{2},y^{2}-x^{2}\right)}}
\atanh@{x/y} = x\CarlsonellintRC@{y^{2}}{y^{2}-x^{2}}

Error
ArcTanh[x/y] == x*1/Sqrt[(y)^(2)- (x)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2))/((y)^(2)- (x)^(2))]
Missing Macro Error Failure -
Failed [15 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10#Ex4 arcsin ( x / y ) = x R C ( y 2 - x 2 , y 2 ) 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arcsin}\left(x/y\right)=xR_{C}\left(% y^{2}-x^{2},y^{2}\right)}}
\asin@{x/y} = x\CarlsonellintRC@{y^{2}-x^{2}}{y^{2}}

Error
ArcSin[x/y] == x*1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2)- (x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [9 / 18]
Result: -3.141592653589793
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-3.141592653589793, 3.525494348078172]
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.10#Ex5 arcsinh ( x / y ) = x R C ( y 2 + x 2 , y 2 ) hyperbolic-inverse-sine 𝑥 𝑦 𝑥 Carlson-integral-RC superscript 𝑦 2 superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(x/y\right)=xR_{C}\left% (y^{2}+x^{2},y^{2}\right)}}
\asinh@{x/y} = x\CarlsonellintRC@{y^{2}+x^{2}}{y^{2}}

Error
ArcSinh[x/y] == x*1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((y)^(2)+ (x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [9 / 18]
Result: Complex[-1.7627471740390859, 0.0]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-3.6368929184641337, 0.0]
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.10#Ex6 arccos ( x / y ) = ( y 2 - x 2 ) 1 / 2 R C ( x 2 , y 2 ) 𝑥 𝑦 superscript superscript 𝑦 2 superscript 𝑥 2 1 2 Carlson-integral-RC superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arccos}\left(x/y\right)=(y^{2}-x^{2}% )^{1/2}R_{C}\left(x^{2},y^{2}\right)}}
\acos@{x/y} = (y^{2}-x^{2})^{1/2}\CarlsonellintRC@{x^{2}}{y^{2}}

Error
ArcCos[x/y] == ((y)^(2)- (x)^(2))^(1/2)* 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [12 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10#Ex7 arccosh ( x / y ) = ( x 2 - y 2 ) 1 / 2 R C ( x 2 , y 2 ) hyperbolic-inverse-cosine 𝑥 𝑦 superscript superscript 𝑥 2 superscript 𝑦 2 1 2 Carlson-integral-RC superscript 𝑥 2 superscript 𝑦 2 {\displaystyle{\displaystyle\operatorname{arccosh}\left(x/y\right)=(x^{2}-y^{2% })^{1/2}R_{C}\left(x^{2},y^{2}\right)}}
\acosh@{x/y} = (x^{2}-y^{2})^{1/2}\CarlsonellintRC@{x^{2}}{y^{2}}

Error
ArcCosh[x/y] == ((x)^(2)- (y)^(2))^(1/2)* 1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))]
Missing Macro Error Failure -
Failed [12 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.10.E2 ( sinh ϕ ) R C ( 1 , cosh 2 ϕ ) = gd ( ϕ ) italic-ϕ Carlson-integral-RC 1 2 italic-ϕ Gudermannian italic-ϕ {\displaystyle{\displaystyle(\sinh\phi)R_{C}\left(1,{\cosh^{2}}\phi\right)=% \operatorname{gd}\left(\phi\right)}}
(\sinh@@{\phi})\CarlsonellintRC@{1}{\cosh^{2}@@{\phi}} = \Gudermannian@{\phi}
- < ( ϕ ) , ( ϕ ) < formulae-sequence italic-ϕ italic-ϕ {\displaystyle{\displaystyle-\infty<(\phi),(\phi)<\infty}}
Error
(Sinh[\[Phi]])*1/Sqrt[(Cosh[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cosh[\[Phi]])^(2))] == Gudermannian[\[Phi]]
Missing Macro Error Failure - Successful [Tested: 6]
19.11.E1 F ( θ , k ) + F ( ϕ , k ) = F ( ψ , k ) elliptic-integral-first-kind-F 𝜃 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 elliptic-integral-first-kind-F 𝜓 𝑘 {\displaystyle{\displaystyle F\left(\theta,k\right)+F\left(\phi,k\right)=F% \left(\psi,k\right)}}
\incellintFk@{\theta}{k}+\incellintFk@{\phi}{k} = \incellintFk@{\psi}{k}

EllipticF(sin(theta), k)+ EllipticF(sin(phi), k) = EllipticF(sin(psi), k)
EllipticF[\[Theta], (k)^2]+ EllipticF[\[Phi], (k)^2] == EllipticF[\[Psi], (k)^2]
Failure Failure
Failed [300 / 300]
Result: .8208700290+.6773780507*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .4831883421+.7182528229*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.43180375739814203, 0.27142936483528934]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.3965687056216178, 0.33175091278780894]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11.E2 E ( θ , k ) + E ( ϕ , k ) = E ( ψ , k ) + k 2 sin θ sin ϕ sin ψ elliptic-integral-second-kind-E 𝜃 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 elliptic-integral-second-kind-E 𝜓 𝑘 superscript 𝑘 2 𝜃 italic-ϕ 𝜓 {\displaystyle{\displaystyle E\left(\theta,k\right)+E\left(\phi,k\right)=E% \left(\psi,k\right)+k^{2}\sin\theta\sin\phi\sin\psi}}
\incellintEk@{\theta}{k}+\incellintEk@{\phi}{k} = \incellintEk@{\psi}{k}+k^{2}\sin@@{\theta}\sin@@{\phi}\sin@@{\psi}

EllipticE(sin(theta), k)+ EllipticE(sin(phi), k) = EllipticE(sin(psi), k)+ (k)^(2)* sin(theta)*sin(phi)*sin(psi)
EllipticE[\[Theta], (k)^2]+ EllipticE[\[Phi], (k)^2] == EllipticE[\[Psi], (k)^2]+ (k)^(2)* Sin[\[Theta]]*Sin[\[Phi]]*Sin[\[Psi]]
Failure Failure
Failed [300 / 300]
Result: .5188815884-.3712110352*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.324003006-2.889566484*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.41998937174924766, 0.11250711558240023]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.3908843789278109, -0.3018102404271388]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11#Ex3 cos ψ = cos θ cos ϕ - ( sin θ sin ϕ ) Δ ( θ ) Δ ( ϕ ) 1 - k 2 sin 2 θ sin 2 ϕ 𝜓 𝜃 italic-ϕ 𝜃 italic-ϕ Δ 𝜃 Δ italic-ϕ 1 superscript 𝑘 2 2 𝜃 2 italic-ϕ {\displaystyle{\displaystyle\cos\psi=\frac{\cos\theta\cos\phi-(\sin\theta\sin% \phi)\Delta(\theta)\Delta(\phi)}{1-k^{2}{\sin^{2}}\theta{\sin^{2}}\phi}}}
\cos@@{\psi} = \frac{\cos@@{\theta}\cos@@{\phi}-(\sin@@{\theta}\sin@@{\phi})\Delta(\theta)\Delta(\phi)}{1-k^{2}\sin^{2}@@{\theta}\sin^{2}@@{\phi}}

cos(psi) = (cos(theta)*cos(phi)-(sin(theta)*sin(phi))*(sqrt(1 - (k)^(2)* (sin(theta))^(2)))*Delta(phi))/(1 - (k)^(2)* (sin(theta))^(2)* (sin(phi))^(2))
Cos[\[Psi]] == Divide[Cos[\[Theta]]*Cos[\[Phi]]-(Sin[\[Theta]]*Sin[\[Phi]])*(Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)])*\[CapitalDelta][\[Phi]],1 - (k)^(2)* (Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)]
Failure Failure
Failed [300 / 300]
Result: -.360132946e-1+.3498736067*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .3023079579-.441042741e-1*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.06008432780660544, 0.09466439987688165]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.1274461431695849, -0.029704144406044533]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11#Ex4 tan ( 1 2 ψ ) = ( sin θ ) Δ ( ϕ ) + ( sin ϕ ) Δ ( θ ) cos θ + cos ϕ 1 2 𝜓 𝜃 Δ italic-ϕ italic-ϕ Δ 𝜃 𝜃 italic-ϕ {\displaystyle{\displaystyle\tan\left(\tfrac{1}{2}\psi\right)=\frac{(\sin% \theta)\Delta(\phi)+(\sin\phi)\Delta(\theta)}{\cos\theta+\cos\phi}}}
\tan@{\tfrac{1}{2}\psi} = \frac{(\sin@@{\theta})\Delta(\phi)+(\sin@@{\phi})\Delta(\theta)}{\cos@@{\theta}+\cos@@{\phi}}

tan((1)/(2)*psi) = ((sin(theta))*Delta(phi)+(sin(phi))*(sqrt(1 - (k)^(2)* (sin(theta))^(2))))/(cos(theta)+ cos(phi))
Tan[Divide[1,2]*\[Psi]] == Divide[(Sin[\[Theta]])*\[CapitalDelta][\[Phi]]+(Sin[\[Phi]])*(Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)]),Cos[\[Theta]]+ Cos[\[Phi]]]
Translation Error Translation Error - -
19.11.E5 Π ( θ , α 2 , k ) + Π ( ϕ , α 2 , k ) = Π ( ψ , α 2 , k ) - α 2 R C ( γ - δ , γ ) elliptic-integral-third-kind-Pi 𝜃 superscript 𝛼 2 𝑘 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 elliptic-integral-third-kind-Pi 𝜓 superscript 𝛼 2 𝑘 superscript 𝛼 2 Carlson-integral-RC 𝛾 𝛿 𝛾 {\displaystyle{\displaystyle\Pi\left(\theta,\alpha^{2},k\right)+\Pi\left(\phi,% \alpha^{2},k\right)=\Pi\left(\psi,\alpha^{2},k\right)-\alpha^{2}R_{C}\left(% \gamma-\delta,\gamma\right)}}
\incellintPik@{\theta}{\alpha^{2}}{k}+\incellintPik@{\phi}{\alpha^{2}}{k} = \incellintPik@{\psi}{\alpha^{2}}{k}-\alpha^{2}\CarlsonellintRC@{\gamma-\delta}{\gamma}

Error
EllipticPi[\[Alpha]^(2), \[Theta],(k)^2]+ EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == EllipticPi[\[Alpha]^(2), \[Psi],(k)^2]- \[Alpha]^(2)* 1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]-(\[Alpha]^(2)*(1 - \[Alpha]^(2))*(\[Alpha]^(2)- (k)^(2))))/(\[Gamma])]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[2.431737700775111, 0.07689658395417326]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.648685299290325, -1.4197583822626343]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11.E6_5 R C ( γ - δ , γ ) = - 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 - 1 - α 2 cos θ cos ϕ cos ψ ) Carlson-integral-RC 𝛾 𝛿 𝛾 1 𝛿 𝛿 𝜃 italic-ϕ 𝜓 superscript 𝛼 2 1 superscript 𝛼 2 𝜃 italic-ϕ 𝜓 {\displaystyle{\displaystyle R_{C}\left(\gamma-\delta,\gamma\right)=\frac{-1}{% \sqrt{\delta}}\operatorname{arctan}\left(\frac{\sqrt{\delta}\sin\theta\sin\phi% \sin\psi}{\alpha^{2}-1-\alpha^{2}\cos\theta\cos\phi\cos\psi}\right)}}
\CarlsonellintRC@{\gamma-\delta}{\gamma} = \frac{-1}{\sqrt{\delta}}\atan@{\frac{\sqrt{\delta}\sin@@{\theta}\sin@@{\phi}\sin@@{\psi}}{\alpha^{2}-1-\alpha^{2}\cos@@{\theta}\cos@@{\phi}\cos@@{\psi}}}

Error
1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]-(\[Alpha]^(2)*(1 - \[Alpha]^(2))*(\[Alpha]^(2)- (k)^(2))))/(\[Gamma])] == Divide[- 1,Sqrt[\[Alpha]^(2)*(1 - \[Alpha]^(2))*(\[Alpha]^(2)- (k)^(2))]]*ArcTan[Divide[Sqrt[\[Alpha]^(2)*(1 - \[Alpha]^(2))*(\[Alpha]^(2)- (k)^(2))]*Sin[\[Theta]]*Sin[\[Phi]]*Sin[\[Psi]],\[Alpha]^(2)- 1 - \[Alpha]^(2)* Cos[\[Theta]]*Cos[\[Phi]]*Cos[\[Psi]]]]
Missing Macro Error Translation Error - -
19.11.E7 F ( ϕ , k ) = K ( k ) - F ( θ , k ) elliptic-integral-first-kind-F italic-ϕ 𝑘 complete-elliptic-integral-first-kind-K 𝑘 elliptic-integral-first-kind-F 𝜃 𝑘 {\displaystyle{\displaystyle F\left(\phi,k\right)=K\left(k\right)-F\left(% \theta,k\right)}}
\incellintFk@{\phi}{k} = \compellintKk@{k}-\incellintFk@{\theta}{k}

EllipticF(sin(phi), k) = EllipticK(k)- EllipticF(sin(theta), k)
EllipticF[\[Phi], (k)^2] == EllipticK[(k)^2]- EllipticF[\[Theta], (k)^2]
Failure Failure Error
Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.04973776616306258, 1.7417596493254397]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11.E8 E ( ϕ , k ) = E ( k ) - E ( θ , k ) + k 2 sin θ sin ϕ elliptic-integral-second-kind-E italic-ϕ 𝑘 complete-elliptic-integral-second-kind-E 𝑘 elliptic-integral-second-kind-E 𝜃 𝑘 superscript 𝑘 2 𝜃 italic-ϕ {\displaystyle{\displaystyle E\left(\phi,k\right)=E\left(k\right)-E\left(% \theta,k\right)+k^{2}\sin\theta\sin\phi}}
\incellintEk@{\phi}{k} = \compellintEk@{k}-\incellintEk@{\theta}{k}+k^{2}\sin@@{\theta}\sin@@{\phi}

EllipticE(sin(phi), k) = EllipticE(k)- EllipticE(sin(theta), k)+ (k)^(2)* sin(theta)*sin(phi)
EllipticE[\[Phi], (k)^2] == EllipticE[(k)^2]- EllipticE[\[Theta], (k)^2]+ (k)^(2)* Sin[\[Theta]]*Sin[\[Phi]]
Failure Failure
Failed [295 / 300]
Result: .940848258e-1+.952154806e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.829018303-3.772436995*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [297 / 300]
Result: Complex[-0.2691514567553243, 0.26012051423236426]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.06105092961961717, -1.8070495799711206]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11.E9 tan θ = 1 / ( k tan ϕ ) 𝜃 1 superscript 𝑘 italic-ϕ {\displaystyle{\displaystyle\tan\theta=1/(k^{\prime}\tan\phi)}}
\tan@@{\theta} = 1/(k^{\prime}\tan@@{\phi})

tan(theta) = 1/(sqrt(1 - (k)^(2))*tan(phi))
Tan[\[Theta]] == 1/(Sqrt[1 - (k)^(2)]*Tan[\[Phi]])
Failure Failure
Failed [300 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 1.112198033+1.184536461*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.0561283793604441, 1.210195136063891]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11.E10 Π ( ϕ , α 2 , k ) = Π ( α 2 , k ) - Π ( θ , α 2 , k ) - α 2 R C ( γ - δ , γ ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 elliptic-integral-third-kind-Pi 𝜃 superscript 𝛼 2 𝑘 superscript 𝛼 2 Carlson-integral-RC 𝛾 𝛿 𝛾 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},k\right)=\Pi\left(\alpha^% {2},k\right)-\Pi\left(\theta,\alpha^{2},k\right)-\alpha^{2}R_{C}\left(\gamma-% \delta,\gamma\right)}}
\incellintPik@{\phi}{\alpha^{2}}{k} = \compellintPik@{\alpha^{2}}{k}-\incellintPik@{\theta}{\alpha^{2}}{k}-\alpha^{2}\CarlsonellintRC@{\gamma-\delta}{\gamma}

Error
EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == EllipticPi[\[Alpha]^(2), (k)^2]- EllipticPi[\[Alpha]^(2), \[Theta],(k)^2]- \[Alpha]^(2)* 1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]-(\[Alpha]^(2)*(1 - \[Alpha]^(2))*(\[Alpha]^(2)- (k)^(2))))/(\[Gamma])]
Missing Macro Error Failure -
Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[2.2835000786563655, -0.476202278380103]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11.E12 F ( ψ , k ) = 2 F ( θ , k ) elliptic-integral-first-kind-F 𝜓 𝑘 2 elliptic-integral-first-kind-F 𝜃 𝑘 {\displaystyle{\displaystyle F\left(\psi,k\right)=2F\left(\theta,k\right)}}
\incellintFk@{\psi}{k} = 2\incellintFk@{\theta}{k}

EllipticF(sin(psi), k) = 2*EllipticF(sin(theta), k)
EllipticF[\[Psi], (k)^2] == 2*EllipticF[\[Theta], (k)^2]
Failure Failure
Failed [300 / 300]
Result: -.8208700290-.6773780507*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.4831883421-.7182528229*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.43180375739814203, -0.27142936483528934]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.3965687056216178, -0.33175091278780894]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11.E13 E ( ψ , k ) = 2 E ( θ , k ) - k 2 sin 2 θ sin ψ elliptic-integral-second-kind-E 𝜓 𝑘 2 elliptic-integral-second-kind-E 𝜃 𝑘 superscript 𝑘 2 2 𝜃 𝜓 {\displaystyle{\displaystyle E\left(\psi,k\right)=2E\left(\theta,k\right)-k^{2% }{\sin^{2}}\theta\sin\psi}}
\incellintEk@{\psi}{k} = 2\incellintEk@{\theta}{k}-k^{2}\sin^{2}@@{\theta}\sin@@{\psi}

EllipticE(sin(psi), k) = 2*EllipticE(sin(theta), k)- (k)^(2)* (sin(theta))^(2)* sin(psi)
EllipticE[\[Psi], (k)^2] == 2*EllipticE[\[Theta], (k)^2]- (k)^(2)* (Sin[\[Theta]])^(2)* Sin[\[Psi]]
Failure Failure
Failed [300 / 300]
Result: -.5188815884+.3712110352*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .324003006+2.889566484*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [298 / 300]
Result: Complex[-0.41998937174924766, -0.11250711558240023]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.3908843789278109, 0.3018102404271388]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11#Ex9 cos ψ = ( cos ( 2 θ ) + k 2 sin 4 θ ) / ( 1 - k 2 sin 4 θ ) 𝜓 2 𝜃 superscript 𝑘 2 4 𝜃 1 superscript 𝑘 2 4 𝜃 {\displaystyle{\displaystyle\cos\psi=(\cos\left(2\theta\right)+k^{2}{\sin^{4}}% \theta)/(1-k^{2}{\sin^{4}}\theta)}}
\cos@@{\psi} = (\cos@{2\theta}+k^{2}\sin^{4}@@{\theta})/(1-k^{2}\sin^{4}@@{\theta})

cos(psi) = (cos(2*theta)+ (k)^(2)* (sin(theta))^(4))/(1 - (k)^(2)* (sin(theta))^(4))
Cos[\[Psi]] == (Cos[2*\[Theta]]+ (k)^(2)* (Sin[\[Theta]])^(4))/(1 - (k)^(2)* (Sin[\[Theta]])^(4))
Failure Failure
Failed [300 / 300]
Result: .6382547213-.68319321e-2*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 1.291602175-.5372399851*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.22600457397095797, 0.19313483829287414]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.33144266284556045, -0.05654646036238595]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11#Ex10 tan ( 1 2 ψ ) = ( tan θ ) Δ ( θ ) 1 2 𝜓 𝜃 Δ 𝜃 {\displaystyle{\displaystyle\tan\left(\tfrac{1}{2}\psi\right)=(\tan\theta)% \Delta(\theta)}}
\tan@{\tfrac{1}{2}\psi} = (\tan@@{\theta})\Delta(\theta)

tan((1)/(2)*psi) = (tan(theta))*(sqrt(1 - (k)^(2)* (sin(theta))^(2)))
Tan[Divide[1,2]*\[Psi]] == (Tan[\[Theta]])*(Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)])
Failure Failure
Failed [300 / 300]
Result: -.4299370879-.441018886e-1*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -1.378631246+.6589669897*I
Test Values: {psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.21639778041374116, -0.09902593860776912]
Test Values: {Rule[k, 1], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.2801868441200064, 0.09163936360272593]
Test Values: {Rule[k, 2], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.11#Ex11 sin θ = ( sin ψ ) / ( 1 + cos ψ ) ( 1 + Δ ( ψ ) ) 𝜃 𝜓 1 𝜓 1 Δ 𝜓 {\displaystyle{\displaystyle\sin\theta=(\sin\psi)/\sqrt{(1+\cos\psi)(1+\Delta(% \psi))}}}
\sin@@{\theta} = (\sin@@{\psi})/\sqrt{(1+\cos@@{\psi})(1+\Delta(\psi))}

sin(theta) = (sin(psi))/(sqrt((1 + cos(psi))*(1 + Delta(psi))))
Sin[\[Theta]] == (Sin[\[Psi]])/(Sqrt[(1 + Cos[\[Psi]])*(1 + \[CapitalDelta][\[Psi]])])
Failure Failure
Failed [300 / 300]
Result: .3459933254+.2199626413*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I}

Result: -1.183718368+.7410028953*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.13267626462165183, 0.09545710280323466]
Test Values: {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.6075958421397494, -0.12937331954381406]
Test Values: {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.11#Ex12 cos θ = ( cos ψ ) + Δ ( ψ ) 1 + Δ ( ψ ) 𝜃 𝜓 Δ 𝜓 1 Δ 𝜓 {\displaystyle{\displaystyle\cos\theta=\sqrt{\frac{(\cos\psi)+\Delta(\psi)}{1+% \Delta(\psi)}}}}
\cos@@{\theta} = \sqrt{\frac{(\cos@@{\psi})+\Delta(\psi)}{1+\Delta(\psi)}}

cos(theta) = sqrt(((cos(psi))+ Delta(psi))/(1 + Delta(psi)))
Cos[\[Theta]] == Sqrt[Divide[(Cos[\[Psi]])+ \[CapitalDelta][\[Psi]],1 + \[CapitalDelta][\[Psi]]]]
Failure Failure
Failed [300 / 300]
Result: -.1386531520-.3275237699*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I}

Result: .3585693461+.5385011568*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.027928525698177165, -0.06433717895055871]
Test Values: {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.11337825659380207, -0.16573354274294425]
Test Values: {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.11#Ex13 tan θ = tan ( 1 2 ψ ) 1 + cos ψ ( cos ψ ) + Δ ( ψ ) 𝜃 1 2 𝜓 1 𝜓 𝜓 Δ 𝜓 {\displaystyle{\displaystyle\tan\theta=\tan\left(\tfrac{1}{2}\psi\right)\sqrt{% \frac{1+\cos\psi}{(\cos\psi)+\Delta(\psi)}}}}
\tan@@{\theta} = \tan@{\tfrac{1}{2}\psi}\sqrt{\frac{1+\cos@@{\psi}}{(\cos@@{\psi})+\Delta(\psi)}}

tan(theta) = tan((1)/(2)*psi)*sqrt((1 + cos(psi))/((cos(psi))+ Delta(psi)))
Tan[\[Theta]] == Tan[Divide[1,2]*\[Psi]]*Sqrt[Divide[1 + Cos[\[Psi]],(Cos[\[Psi]])+ \[CapitalDelta][\[Psi]]]]
Failure Failure
Failed [300 / 300]
Result: .1382279959+.6687205345*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I}

Result: -.8192630216+.6110829935*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, theta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.12433851209893465, 0.1415108829927562]
Test Values: {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.5756669065605976, -0.05657247148971478]
Test Values: {Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.11.E16 Π ( ψ , α 2 , k ) = 2 Π ( θ , α 2 , k ) + α 2 R C ( γ - δ , γ ) elliptic-integral-third-kind-Pi 𝜓 superscript 𝛼 2 𝑘 2 elliptic-integral-third-kind-Pi 𝜃 superscript 𝛼 2 𝑘 superscript 𝛼 2 Carlson-integral-RC 𝛾 𝛿 𝛾 {\displaystyle{\displaystyle\Pi\left(\psi,\alpha^{2},k\right)=2\Pi\left(\theta% ,\alpha^{2},k\right)+\alpha^{2}R_{C}\left(\gamma-\delta,\gamma\right)}}
\incellintPik@{\psi}{\alpha^{2}}{k} = 2\incellintPik@{\theta}{\alpha^{2}}{k}+\alpha^{2}\CarlsonellintRC@{\gamma-\delta}{\gamma}

Error
EllipticPi[\[Alpha]^(2), \[Psi],(k)^2] == 2*EllipticPi[\[Alpha]^(2), \[Theta],(k)^2]+ \[Alpha]^(2)* 1/Sqrt[(((Csc[\[Theta]])^(2))- \[Alpha]^(2))^(2)*(((Csc[\[Psi]])^(2))- \[Alpha]^(2))]*Hypergeometric2F1[1/2,1/2,3/2,1-(((((Csc[\[Theta]])^(2))- \[Alpha]^(2))^(2)*(((Csc[\[Psi]])^(2))- \[Alpha]^(2)))- \[Delta])/((((Csc[\[Theta]])^(2))- \[Alpha]^(2))^(2)*(((Csc[\[Psi]])^(2))- \[Alpha]^(2)))]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Complex[-0.6318505653554005, -0.11296244472006367]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.5728350059366992, -0.1614996009729338]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.12.E1 K ( k ) = m = 0 ( 1 2 ) m ( 1 2 ) m m ! m ! k 2 m ( ln ( 1 k ) + d ( m ) ) complete-elliptic-integral-first-kind-K 𝑘 superscript subscript 𝑚 0 Pochhammer 1 2 𝑚 Pochhammer 1 2 𝑚 𝑚 𝑚 superscript superscript 𝑘 2 𝑚 1 superscript 𝑘 𝑑 𝑚 {\displaystyle{\displaystyle K\left(k\right)=\sum_{m=0}^{\infty}\frac{{\left(% \tfrac{1}{2}\right)_{m}}{\left(\tfrac{1}{2}\right)_{m}}}{m!\;m!}{k^{\prime}}^{% 2m}\left(\ln\left(\frac{1}{k^{\prime}}\right)+d(m)\right)}}
\compellintKk@{k} = \sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{1}{2}}{m}}{m!\;m!}{k^{\prime}}^{2m}\left(\ln@@{\left(\frac{1}{k^{\prime}}\right)}+d(m)\right)
0 < | k | , | k | < 1 formulae-sequence 0 superscript 𝑘 superscript 𝑘 1 {\displaystyle{\displaystyle 0<|k^{\prime}|,|k^{\prime}|<1}}
EllipticK(k) = sum((pochhammer((1)/(2), m)*pochhammer((1)/(2), m))/(factorial(m)*factorial(m))*(sqrt(1 - (k)^(2)))^(2*m)*(ln((1)/(sqrt(1 - (k)^(2))))+ d(m)), m = 0..infinity)
EllipticK[(k)^2] == Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[1,2], m],(m)!*(m)!]*(Sqrt[1 - (k)^(2)])^(2*m)*(Log[Divide[1,Sqrt[1 - (k)^(2)]]]+ d[m]), {m, 0, Infinity}, GenerateConditions->None]
Failure Failure Error Skip - No test values generated
19.12.E2 E ( k ) = 1 + 1 2 m = 0 ( 1 2 ) m ( 3 2 ) m ( 2 ) m m ! k 2 m + 2 ( ln ( 1 k ) + d ( m ) - 1 ( 2 m + 1 ) ( 2 m + 2 ) ) complete-elliptic-integral-second-kind-E 𝑘 1 1 2 superscript subscript 𝑚 0 Pochhammer 1 2 𝑚 Pochhammer 3 2 𝑚 Pochhammer 2 𝑚 𝑚 superscript superscript 𝑘 2 𝑚 2 1 superscript 𝑘 𝑑 𝑚 1 2 𝑚 1 2 𝑚 2 {\displaystyle{\displaystyle E\left(k\right)=1+\frac{1}{2}\sum_{m=0}^{\infty}% \frac{{\left(\tfrac{1}{2}\right)_{m}}{\left(\tfrac{3}{2}\right)_{m}}}{{\left(2% \right)_{m}}m!}{k^{\prime}}^{2m+2}\*\left(\ln\left(\frac{1}{k^{\prime}}\right)% +d(m)-\frac{1}{(2m+1)(2m+2)}\right)}}
\compellintEk@{k} = 1+\frac{1}{2}\sum_{m=0}^{\infty}\frac{\Pochhammersym{\tfrac{1}{2}}{m}\Pochhammersym{\tfrac{3}{2}}{m}}{\Pochhammersym{2}{m}m!}{k^{\prime}}^{2m+2}\*\left(\ln@@{\left(\frac{1}{k^{\prime}}\right)}+d(m)-\frac{1}{(2m+1)(2m+2)}\right)
| k | < 1 superscript 𝑘 1 {\displaystyle{\displaystyle|k^{\prime}|<1}}
EllipticE(k) = 1 +(1)/(2)*sum((pochhammer((1)/(2), m)*pochhammer((3)/(2), m))/(pochhammer(2, m)*factorial(m))*(sqrt(1 - (k)^(2)))^(2*m + 2)*(ln((1)/(sqrt(1 - (k)^(2))))+ d(m)-(1)/((2*m + 1)*(2*m + 2))), m = 0..infinity)
EllipticE[(k)^2] == 1 +Divide[1,2]*Sum[Divide[Pochhammer[Divide[1,2], m]*Pochhammer[Divide[3,2], m],Pochhammer[2, m]*(m)!]*(Sqrt[1 - (k)^(2)])^(2*m + 2)*(Log[Divide[1,Sqrt[1 - (k)^(2)]]]+ d[m]-Divide[1,(2*m + 1)*(2*m + 2)]), {m, 0, Infinity}, GenerateConditions->None]
Error Failure -
Failed [10 / 10]
Result: Indeterminate
Test Values: {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[k, 1]}

Result: Indeterminate
Test Values: {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Rule[k, 1]}

... skip entries to safe data
19.12#Ex1 d ( m ) = ψ ( 1 + m ) - ψ ( 1 2 + m ) 𝑑 𝑚 digamma 1 𝑚 digamma 1 2 𝑚 {\displaystyle{\displaystyle d(m)=\psi\left(1+m\right)-\psi\left(\tfrac{1}{2}+% m\right)}}
d(m) = \digamma@{1+m}-\digamma@{\tfrac{1}{2}+m}

d(m) = Psi(1 + m)- Psi((1)/(2)+ m)
d[m] == PolyGamma[1 + m]- PolyGamma[Divide[1,2]+ m]
Failure Failure
Failed [30 / 30]
Result: .4797310429+.5000000000*I
Test Values: {d = 1/2*3^(1/2)+1/2*I, m = 1}

Result: 1.512423114+1.*I
Test Values: {d = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.04671834077232884, 0.24999999999999997]
Test Values: {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[m, 1]}

Result: Complex[0.6463977093312149, 0.49999999999999994]
Test Values: {Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[m, 2]}

... skip entries to safe data
19.12#Ex2 d ( m + 1 ) = d ( m ) - 2 ( 2 m + 1 ) ( 2 m + 2 ) 𝑑 𝑚 1 𝑑 𝑚 2 2 𝑚 1 2 𝑚 2 {\displaystyle{\displaystyle d(m+1)=d(m)-\frac{2}{(2m+1)(2m+2)}}}
d(m+1) = d(m)-\frac{2}{(2m+1)(2m+2)}

d(m + 1) = d(m)-(2)/((2*m + 1)*(2*m + 2))
d[m + 1] == d[m]-Divide[2,(2*m + 1)*(2*m + 2)]
Skipped - no semantic math Skipped - no semantic math - -
19.14.E1 1 x d t t 3 - 1 = 3 - 1 / 4 F ( ϕ , k ) superscript subscript 1 𝑥 𝑡 superscript 𝑡 3 1 superscript 3 1 4 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\int_{1}^{x}\frac{\mathrm{d}t}{\sqrt{t^{3}-1}}=3^{% -1/4}F\left(\phi,k\right)}}
\int_{1}^{x}\frac{\diff{t}}{\sqrt{t^{3}-1}} = 3^{-1/4}\incellintFk@{\phi}{k}
cos ϕ = 3 + 1 - x 3 - 1 + x , k 2 = 2 - 3 4 formulae-sequence italic-ϕ 3 1 𝑥 3 1 𝑥 superscript 𝑘 2 2 3 4 {\displaystyle{\displaystyle\cos\phi=\dfrac{\sqrt{3}+1-x}{\sqrt{3}-1+x},k^{2}=% \dfrac{2-\sqrt{3}}{4}}}
int((1)/(sqrt((t)^(3)- 1)), t = 1..x) = (3)^(- 1/4)* EllipticF(sin(phi), k)
Integrate[Divide[1,Sqrt[(t)^(3)- 1]], {t, 1, x}, GenerateConditions->None] == (3)^(- 1/4)* EllipticF[\[Phi], (k)^2]
Failure Aborted Error Skipped - Because timed out
19.14.E2 x 1 d t 1 - t 3 = 3 - 1 / 4 F ( ϕ , k ) superscript subscript 𝑥 1 𝑡 1 superscript 𝑡 3 superscript 3 1 4 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\int_{x}^{1}\frac{\mathrm{d}t}{\sqrt{1-t^{3}}}=3^{% -1/4}F\left(\phi,k\right)}}
\int_{x}^{1}\frac{\diff{t}}{\sqrt{1-t^{3}}} = 3^{-1/4}\incellintFk@{\phi}{k}
cos ϕ = 3 - 1 + x 3 + 1 - x , k 2 = 2 + 3 4 formulae-sequence italic-ϕ 3 1 𝑥 3 1 𝑥 superscript 𝑘 2 2 3 4 {\displaystyle{\displaystyle\cos\phi=\dfrac{\sqrt{3}-1+x}{\sqrt{3}+1-x},k^{2}=% \dfrac{2+\sqrt{3}}{4}}}
int((1)/(sqrt(1 - (t)^(3))), t = x..1) = (3)^(- 1/4)* EllipticF(sin(phi), k)
Integrate[Divide[1,Sqrt[1 - (t)^(3)]], {t, x, 1}, GenerateConditions->None] == (3)^(- 1/4)* EllipticF[\[Phi], (k)^2]
Failure Aborted Error Skip - No test values generated
19.14.E3 0 x d t 1 + t 4 = sign ( x ) 2 F ( ϕ , k ) superscript subscript 0 𝑥 𝑡 1 superscript 𝑡 4 sign 𝑥 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\int_{0}^{x}\frac{\mathrm{d}t}{\sqrt{1+t^{4}}}=% \frac{\operatorname{sign}\left(x\right)}{2}F\left(\phi,k\right)}}
\int_{0}^{x}\frac{\diff{t}}{\sqrt{1+t^{4}}} = \frac{\sign@{x}}{2}\incellintFk@{\phi}{k}
cos ϕ = 1 - x 2 1 + x 2 , k 2 = 1 2 formulae-sequence italic-ϕ 1 superscript 𝑥 2 1 superscript 𝑥 2 superscript 𝑘 2 1 2 {\displaystyle{\displaystyle\cos\phi=\dfrac{1-x^{2}}{1+x^{2}},k^{2}=\dfrac{1}{% 2}}}
int((1)/(sqrt(1 + (t)^(4))), t = 0..x) = (signum(x))/(2)*EllipticF(sin(phi), k)
Integrate[Divide[1,Sqrt[1 + (t)^(4)]], {t, 0, x}, GenerateConditions->None] == Divide[Sign[x],2]*EllipticF[\[Phi], (k)^2]
Failure Failure Error Skip - No test values generated
19.14.E4 y x d t ( a 1 + b 1 t 2 ) ( a 2 + b 2 t 2 ) = 1 γ - α F ( ϕ , k ) superscript subscript 𝑦 𝑥 𝑡 subscript 𝑎 1 subscript 𝑏 1 superscript 𝑡 2 subscript 𝑎 2 subscript 𝑏 2 superscript 𝑡 2 1 𝛾 𝛼 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{\sqrt{(a_{1}+b_{1}t% ^{2})(a_{2}+b_{2}t^{2})}}=\frac{1}{\sqrt{\gamma-\alpha}}F\left(\phi,k\right)}}
\int_{y}^{x}\frac{\diff{t}}{\sqrt{(a_{1}+b_{1}t^{2})(a_{2}+b_{2}t^{2})}} = \frac{1}{\sqrt{\gamma-\alpha}}\incellintFk@{\phi}{k}
k 2 = ( γ - β ) / ( γ - α ) superscript 𝑘 2 𝛾 𝛽 𝛾 𝛼 {\displaystyle{\displaystyle k^{2}=\ifrac{(\gamma-\beta)}{(\gamma-\alpha)}}}
int((1)/(sqrt((a[1]+ b[1]*(t)^(2))*(a[2]+ b[2]*(t)^(2)))), t = y..x) = (1)/(sqrt(gamma - alpha))*EllipticF(sin(phi), k)
Integrate[Divide[1,Sqrt[(Subscript[a, 1]+ Subscript[b, 1]*(t)^(2))*(Subscript[a, 2]+ Subscript[b, 2]*(t)^(2))]], {t, y, x}, GenerateConditions->None] == Divide[1,Sqrt[\[Gamma]- \[Alpha]]]*EllipticF[\[Phi], (k)^2]
Skipped - Unable to analyze test case: Null Skipped - Unable to analyze test case: Null - -
19.14.E5 sin 2 ϕ = γ - α U 2 + γ 2 italic-ϕ 𝛾 𝛼 superscript 𝑈 2 𝛾 {\displaystyle{\displaystyle{\sin^{2}}\phi=\frac{\gamma-\alpha}{U^{2}+\gamma}}}
\sin^{2}@@{\phi} = \frac{\gamma-\alpha}{U^{2}+\gamma}

(sin(phi))^(2) = (gamma - alpha)/((U)^(2)+ gamma)
(Sin[\[Phi]])^(2) == Divide[\[Gamma]- \[Alpha],(U)^(2)+ \[Gamma]]
Failure Failure
Failed [300 / 300]
Result: 1.144207228+.1616580578*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I}

Result: .2329549284-1.570148532*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.0397570908067482, -1.0061601508735134]
Test Values: {Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.7911458419033055, -1.4391726141222814]
Test Values: {Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.14.E6 ( x 2 - y 2 ) U = x ( a 1 + b 1 y 2 ) ( a 2 + b 2 y 2 ) + y ( a 1 + b 1 x 2 ) ( a 2 + b 2 x 2 ) superscript 𝑥 2 superscript 𝑦 2 𝑈 𝑥 subscript 𝑎 1 subscript 𝑏 1 superscript 𝑦 2 subscript 𝑎 2 subscript 𝑏 2 superscript 𝑦 2 𝑦 subscript 𝑎 1 subscript 𝑏 1 superscript 𝑥 2 subscript 𝑎 2 subscript 𝑏 2 superscript 𝑥 2 {\displaystyle{\displaystyle(x^{2}-y^{2})U=x\sqrt{(a_{1}+b_{1}y^{2})(a_{2}+b_{% 2}y^{2})}+y\sqrt{(a_{1}+b_{1}x^{2})(a_{2}+b_{2}x^{2})}}}
(x^{2}-y^{2})U = x\sqrt{(a_{1}+b_{1}y^{2})(a_{2}+b_{2}y^{2})}+y\sqrt{(a_{1}+b_{1}x^{2})(a_{2}+b_{2}x^{2})}

((x)^(2)- (y)^(2))*U = x*sqrt((a[1]+ b[1]*(y)^(2))*(a[2]+ b[2]*(y)^(2)))+ y*sqrt((a[1]+ b[1]*(x)^(2))*(a[2]+ b[2]*(x)^(2)))
((x)^(2)- (y)^(2))*U == x*Sqrt[(Subscript[a, 1]+ Subscript[b, 1]*(y)^(2))*(Subscript[a, 2]+ Subscript[b, 2]*(y)^(2))]+ y*Sqrt[(Subscript[a, 1]+ Subscript[b, 1]*(x)^(2))*(Subscript[a, 2]+ Subscript[b, 2]*(x)^(2))]
Skipped - no semantic math Skipped - no semantic math - -
19.14.E7 sin 2 ϕ = ( γ - α ) x 2 a 1 a 2 + γ x 2 2 italic-ϕ 𝛾 𝛼 superscript 𝑥 2 subscript 𝑎 1 subscript 𝑎 2 𝛾 superscript 𝑥 2 {\displaystyle{\displaystyle{\sin^{2}}\phi=\frac{(\gamma-\alpha)x^{2}}{a_{1}a_% {2}+\gamma x^{2}}}}
\sin^{2}@@{\phi} = \frac{(\gamma-\alpha)x^{2}}{a_{1}a_{2}+\gamma x^{2}}

(sin(phi))^(2) = ((gamma - alpha)*(x)^(2))/(a[1]*a[2]+ gamma*(x)^(2))
(Sin[\[Phi]])^(2) == Divide[(\[Gamma]- \[Alpha])*(x)^(2),Subscript[a, 1]*Subscript[a, 2]+ \[Gamma]*(x)^(2)]
Failure Failure
Failed [300 / 300]
Result: 1.560947444+.1288116535*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, x = 3/2, a[1] = 1/2*3^(1/2)+1/2*I, a[2] = 1/2*3^(1/2)+1/2*I}

Result: 2.678639127-1.794319469*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, x = 3/2, a[1] = 1/2*3^(1/2)+1/2*I, a[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.3471528039744003, -1.172411794219179]
Test Values: {Rule[x, 1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.5030688086095803, -1.7852795940180226]
Test Values: {Rule[x, 1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.14.E8 sin 2 ϕ = γ - α b 1 b 2 y 2 + γ 2 italic-ϕ 𝛾 𝛼 subscript 𝑏 1 subscript 𝑏 2 superscript 𝑦 2 𝛾 {\displaystyle{\displaystyle{\sin^{2}}\phi=\frac{\gamma-\alpha}{b_{1}b_{2}y^{2% }+\gamma}}}
\sin^{2}@@{\phi} = \frac{\gamma-\alpha}{b_{1}b_{2}y^{2}+\gamma}

(sin(phi))^(2) = (gamma - alpha)/(b[1]*b[2]*(y)^(2)+ gamma)
(Sin[\[Phi]])^(2) == Divide[\[Gamma]- \[Alpha],Subscript[b, 1]*Subscript[b, 2]*(y)^(2)+ \[Gamma]]
Failure Failure
Failed [300 / 300]
Result: .8585159693+.3113806358*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, y = -3/2, b[1] = 1/2*3^(1/2)+1/2*I, b[2] = 1/2*3^(1/2)+1/2*I}

Result: .2216600130+.2500138214*I
Test Values: {alpha = 3/2, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, y = -3/2, b[1] = 1/2*3^(1/2)+1/2*I, b[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.683185473382228, -0.7175596041712626]
Test Values: {Rule[y, -1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.5335538340604822, -1.7418837307419275]
Test Values: {Rule[y, -1.5], Rule[α, 1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[b, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.14.E9 sin 2 ϕ = ( γ - α ) ( x 2 - y 2 ) γ ( x 2 - y 2 ) - a 1 ( a 2 + b 2 x 2 ) 2 italic-ϕ 𝛾 𝛼 superscript 𝑥 2 superscript 𝑦 2 𝛾 superscript 𝑥 2 superscript 𝑦 2 subscript 𝑎 1 subscript 𝑎 2 subscript 𝑏 2 superscript 𝑥 2 {\displaystyle{\displaystyle{\sin^{2}}\phi=\frac{(\gamma-\alpha)(x^{2}-y^{2})}% {\gamma(x^{2}-y^{2})-a_{1}(a_{2}+b_{2}x^{2})}}}
\sin^{2}@@{\phi} = \frac{(\gamma-\alpha)(x^{2}-y^{2})}{\gamma(x^{2}-y^{2})-a_{1}(a_{2}+b_{2}x^{2})}

(sin(phi))^(2) = ((gamma - alpha)*((x)^(2)- (y)^(2)))/(gamma*((x)^(2)- (y)^(2))- a[1]*(a[2]+ b[2]*(x)^(2)))
(Sin[\[Phi]])^(2) == Divide[(\[Gamma]- \[Alpha])*((x)^(2)- (y)^(2)),\[Gamma]*((x)^(2)- (y)^(2))- Subscript[a, 1]*(Subscript[a, 2]+ Subscript[b, 2]*(x)^(2))]
Failure Failure Manual Skip! Skipped - Because timed out
19.14.E10 sin 2 ϕ = ( γ - α ) ( y 2 - x 2 ) γ ( y 2 - x 2 ) - a 1 ( a 2 + b 2 y 2 ) 2 italic-ϕ 𝛾 𝛼 superscript 𝑦 2 superscript 𝑥 2 𝛾 superscript 𝑦 2 superscript 𝑥 2 subscript 𝑎 1 subscript 𝑎 2 subscript 𝑏 2 superscript 𝑦 2 {\displaystyle{\displaystyle{\sin^{2}}\phi=\frac{(\gamma-\alpha)(y^{2}-x^{2})}% {\gamma(y^{2}-x^{2})-a_{1}(a_{2}+b_{2}y^{2})}}}
\sin^{2}@@{\phi} = \frac{(\gamma-\alpha)(y^{2}-x^{2})}{\gamma(y^{2}-x^{2})-a_{1}(a_{2}+b_{2}y^{2})}

(sin(phi))^(2) = ((gamma - alpha)*((y)^(2)- (x)^(2)))/(gamma*((y)^(2)- (x)^(2))- a[1]*(a[2]+ b[2]*(y)^(2)))
(Sin[\[Phi]])^(2) == Divide[(\[Gamma]- \[Alpha])*((y)^(2)- (x)^(2)),\[Gamma]*((y)^(2)- (x)^(2))- Subscript[a, 1]*(Subscript[a, 2]+ Subscript[b, 2]*(y)^(2))]
Failure Failure Manual Skip! Skipped - Because timed out
19.16.E1 R F ( x , y , z ) = 1 2 0 d t s ( t ) Carlson-integral-RF 𝑥 𝑦 𝑧 1 2 superscript subscript 0 𝑡 𝑠 𝑡 {\displaystyle{\displaystyle R_{F}\left(x,y,z\right)=\frac{1}{2}\int_{0}^{% \infty}\frac{\mathrm{d}t}{s(t)}}}
\CarlsonsymellintRF@{x}{y}{z} = \frac{1}{2}\int_{0}^{\infty}\frac{\diff{t}}{s(t)}

0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = (1)/(2)*int((1)/(s(t)), t = 0..infinity)
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Divide[1,2]*Integrate[Divide[1,s[t]], {t, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [108 / 108]
Result: Float(infinity)+1.326265449*I
Test Values: {s = -3/2, x = 3/2, y = -3/2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {s = -3/2, x = 3/2, y = 3/2}

... skip entries to safe data
Failed [108 / 108]
Result: Complex[52.57956240437182, 0.6784437678906974]
Test Values: {Rule[s, -1.5], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[52.453473067488765, -0.7809212115368181]
Test Values: {Rule[s, -1.5], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.16.E2 R J ( x , y , z , p ) = 3 2 0 d t s ( t ) ( t + p ) Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 3 2 superscript subscript 0 𝑡 𝑠 𝑡 𝑡 𝑝 {\displaystyle{\displaystyle R_{J}\left(x,y,z,p\right)=\frac{3}{2}\int_{0}^{% \infty}\frac{\mathrm{d}t}{s(t)(t+p)}}}
\CarlsonsymellintRJ@{x}{y}{z}{p} = \frac{3}{2}\int_{0}^{\infty}\frac{\diff{t}}{s(t)(t+p)}

Error
3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == Divide[3,2]*Integrate[Divide[1,s[t]*(t + p)], {t, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
19.16.E3 R G ( x , y , z ) = 1 4 π 0 2 π 0 π ( x sin 2 θ cos 2 ϕ + y sin 2 θ sin 2 ϕ + z cos 2 θ ) 1 2 sin θ d θ d ϕ Carlson-integral-RG 𝑥 𝑦 𝑧 1 4 𝜋 superscript subscript 0 2 𝜋 superscript subscript 0 𝜋 superscript 𝑥 2 𝜃 2 italic-ϕ 𝑦 2 𝜃 2 italic-ϕ 𝑧 2 𝜃 1 2 𝜃 𝜃 italic-ϕ {\displaystyle{\displaystyle R_{G}\left(x,y,z\right)=\frac{1}{4\pi}\int_{0}^{2% \pi}\!\!\!\!\int_{0}^{\pi}\left(x{\sin^{2}}\theta{\cos^{2}}\phi+y{\sin^{2}}% \theta{\sin^{2}}\phi+z{\cos^{2}}\theta\right)^{\frac{1}{2}}\sin\theta\mathrm{d% }\theta\mathrm{d}\phi}}
\CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4\pi}\int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\left(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta}\right)^{\frac{1}{2}}\sin@@{\theta}\diff{\theta}\diff{\phi}

Error
Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == Divide[1,4*Pi]*Integrate[Integrate[(x*(Sin[\[Theta]])^(2)* (Cos[\[Phi]])^(2)+ y*(Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)+(x + y*I)*(Cos[\[Theta]])^(2))^(Divide[1,2])* Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.16.E4 s ( t ) = t + x t + y t + z 𝑠 𝑡 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 {\displaystyle{\displaystyle s(t)=\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}}
s(t) = \sqrt{t+x}\sqrt{t+y}\sqrt{t+z}

s(t) = sqrt(t + x)*sqrt(t + y)*sqrt(t +(x + y*I))
s[t] == Sqrt[t + x]*Sqrt[t + y]*Sqrt[t +(x + y*I)]
Skipped - no semantic math Skipped - no semantic math - -
19.16.E5 R D ( x , y , z ) = R J ( x , y , z , z ) Carlson-integral-RD 𝑥 𝑦 𝑧 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑧 {\displaystyle{\displaystyle R_{D}\left(x,y,z\right)=R_{J}\left(x,y,z,z\right)}}
\CarlsonsymellintRD@{x}{y}{z} = \CarlsonsymellintRJ@{x}{y}{z}{z}

Error
3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*(x + y*I-x)/(x + y*I-x + y*I)*(EllipticPi[(x + y*I-x + y*I)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[0.37100270206594405, -0.09129381935817127]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[0.5182279531589904, 0.0513630200054771]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.16.E5 R J ( x , y , z , z ) = 3 2 0 d t s ( t ) ( t + z ) Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑧 3 2 superscript subscript 0 𝑡 𝑠 𝑡 𝑡 𝑧 {\displaystyle{\displaystyle R_{J}\left(x,y,z,z\right)=\frac{3}{2}\int_{0}^{% \infty}\frac{\mathrm{d}t}{s(t)(t+z)}}}
\CarlsonsymellintRJ@{x}{y}{z}{z} = \frac{3}{2}\int_{0}^{\infty}\frac{\diff{t}}{s(t)(t+z)}

Error
3*(x + y*I-x)/(x + y*I-x + y*I)*(EllipticPi[(x + y*I-x + y*I)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == Divide[3,2]*Integrate[Divide[1,s[t]*(t +(x + y*I))], {t, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
19.16.E6 R C ( x , y ) = R F ( x , y , y ) Carlson-integral-RC 𝑥 𝑦 Carlson-integral-RF 𝑥 𝑦 𝑦 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=R_{F}\left(x,y,y\right)}}
\CarlsonellintRC@{x}{y} = \CarlsonsymellintRF@{x}{y}{y}

Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]/Sqrt[y-x]
Missing Macro Error Failure -
Failed [3 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[y, 0.5]}

... skip entries to safe data
19.16#Ex3 c = csc 2 ϕ 𝑐 2 italic-ϕ {\displaystyle{\displaystyle c={\csc^{2}}\phi}}
c = \csc^{2}@@{\phi}

c = (csc(phi))^(2)
c == (Csc[\[Phi]])^(2)
Failure Failure
Failed [60 / 60]
Result: -2.359812877+.7993130071*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I}

Result: -1.296085040-.8173084059*I
Test Values: {c = -3/2, phi = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [60 / 60]
Result: Complex[-3.841312467237177, 3.4490957612740374]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.17530792640393877, -3.4502399957777015]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.18.E1 R F ( x , y , z ) z = - 1 6 R D ( x , y , z ) partial-derivative Carlson-integral-RF 𝑥 𝑦 𝑧 𝑧 1 6 Carlson-integral-RD 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\frac{\partial R_{F}\left(x,y,z\right)}{\partial z% }=-\tfrac{1}{6}R_{D}\left(x,y,z\right)}}
\pderiv{\CarlsonsymellintRF@{x}{y}{z}}{z} = -\tfrac{1}{6}\CarlsonsymellintRD@{x}{y}{z}

Error
(D[EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x], {temp, 1}]/.temp-> (x + y*I)) == -Divide[1,6]*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[0.03790163875178684, -0.07848225754688502]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[0.07302626282106058, 0.09607801553820669]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.18.E2 d d x R G ( x + a , x + b , x + c ) = 1 2 R F ( x + a , x + b , x + c ) derivative 𝑥 Carlson-integral-RG 𝑥 𝑎 𝑥 𝑏 𝑥 𝑐 1 2 Carlson-integral-RF 𝑥 𝑎 𝑥 𝑏 𝑥 𝑐 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}R_{G}\left(x+a,x+b,x% +c\right)=\tfrac{1}{2}R_{F}\left(x+a,x+b,x+c\right)}}
\deriv{}{x}\CarlsonsymellintRG@{x+a}{x+b}{x+c} = \tfrac{1}{2}\CarlsonsymellintRF@{x+a}{x+b}{x+c}

Error
D[Sqrt[x + c-x + a]*(EllipticE[ArcCos[Sqrt[x + a/x + c]],(x + c-x + b)/(x + c-x + a)]+(Cot[ArcCos[Sqrt[x + a/x + c]]])^2*EllipticF[ArcCos[Sqrt[x + a/x + c]],(x + c-x + b)/(x + c-x + a)]+Cot[ArcCos[Sqrt[x + a/x + c]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + a/x + c]]]^2]), x] == Divide[1,2]*EllipticF[ArcCos[Sqrt[x + a/x + c]],(x + c-x + b)/(x + c-x + a)]/Sqrt[x + c-x + a]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Plus[Complex[0.4534498410585545, 0.2544306388611797], Times[Complex[0.0, 1.7320508075688772], Plus[Complex[-0.5166444818917079, -0.6544984694978735], Times[Complex[0.0, 0.5892556509887895], Power[k, 2], Power[Plus[1.0, Times[-2.0, Power[k, 2]]], Rational[-1, 2]]], Times[Complex[0.0, -0.29462782549439476], Power[Plus[1.0, Times[-2.0, Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[x, 1.5]}

Result: Plus[Complex[0.4534498410585545, 0.1389138883676965], Times[Complex[0.0, 1.7320508075688772], Plus[Complex[-1.7435577900831345, -0.43982297150257077], Times[Complex[0.0, 3.1304951684997055], Power[k, 2], Power[Plus[1.0, Times[-5.0, Power[k, 2]]], Rational[-1, 2]]], Times[Complex[0.0, -0.15652475842498526], Power[Plus[1.0, Times[-5.0, Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[x, 0.5]}

... skip entries to safe data
19.18.E9 ( x x + y y + z z ) R F ( x , y , z ) = - 1 2 R F ( x , y , z ) 𝑥 partial-derivative 𝑥 𝑦 partial-derivative 𝑦 𝑧 partial-derivative 𝑧 Carlson-integral-RF 𝑥 𝑦 𝑧 1 2 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\left(x\frac{\partial}{\partial x}+y\frac{\partial% }{\partial y}+z\frac{\partial}{\partial z}\right)R_{F}\left(x,y,z\right)=-% \tfrac{1}{2}R_{F}\left(x,y,z\right)}}
\left(x\pderiv{}{x}+y\pderiv{}{y}+z\pderiv{}{z}\right)\CarlsonsymellintRF@{x}{y}{z} = -\tfrac{1}{2}\CarlsonsymellintRF@{x}{y}{z}

(x*diff(+ y*diff(+subs( temp=(x + y*I), diff( temp, temp$(1) ) ), y), x))*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = -(1)/(2)*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)
(x*D[+ y*D[+(D[temp, {temp, 1}]/.temp-> (x + y*I)), y], x])*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == -Divide[1,2]*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Aborted Failure
Failed [18 / 18]
Result: -.8633499928+.6631327246*I
Test Values: {x = 3/2, y = -3/2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {x = 3/2, y = 3/2}

... skip entries to safe data
Failed [18 / 18]
Result: Complex[-0.08107235486578032, 0.3392218839453487]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-0.14411702330731, -0.3904606057684091]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.18.E14 2 w x 2 = 2 w y 2 + 1 y w y partial-derivative 𝑤 𝑥 2 partial-derivative 𝑤 𝑦 2 1 𝑦 partial-derivative 𝑤 𝑦 {\displaystyle{\displaystyle\frac{{\partial}^{2}w}{{\partial x}^{2}}=\frac{{% \partial}^{2}w}{{\partial y}^{2}}+\frac{1}{y}\frac{\partial w}{\partial y}}}
\pderiv[2]{w}{x} = \pderiv[2]{w}{y}+\frac{1}{y}\pderiv{w}{y}

diff(w, [x$(2)]) = diff(w, [y$(2)])+(1)/(y)*diff(w, y)
D[w, {x, 2}] == D[w, {y, 2}]+Divide[1,y]*D[w, y]
Successful Successful - Successful [Tested: 180]
19.18.E15 2 W t 2 = 2 W x 2 + 2 W y 2 partial-derivative 𝑊 𝑡 2 partial-derivative 𝑊 𝑥 2 partial-derivative 𝑊 𝑦 2 {\displaystyle{\displaystyle\frac{{\partial}^{2}W}{{\partial t}^{2}}=\frac{{% \partial}^{2}W}{{\partial x}^{2}}+\frac{{\partial}^{2}W}{{\partial y}^{2}}}}
\pderiv[2]{W}{t} = \pderiv[2]{W}{x}+\pderiv[2]{W}{y}

diff(W, [t$(2)]) = diff(W, [x$(2)])+ diff(W, [y$(2)])
D[W, {t, 2}] == D[W, {x, 2}]+ D[W, {y, 2}]
Successful Successful - Successful [Tested: 300]
19.18.E16 2 u x 2 + 2 u y 2 + 1 y u y = 0 partial-derivative 𝑢 𝑥 2 partial-derivative 𝑢 𝑦 2 1 𝑦 partial-derivative 𝑢 𝑦 0 {\displaystyle{\displaystyle\frac{{\partial}^{2}u}{{\partial x}^{2}}+\frac{{% \partial}^{2}u}{{\partial y}^{2}}+\frac{1}{y}\frac{\partial u}{\partial y}=0}}
\pderiv[2]{u}{x}+\pderiv[2]{u}{y}+\frac{1}{y}\pderiv{u}{y} = 0

diff(u, [x$(2)])+ diff(u, [y$(2)])+(1)/(y)*diff(u, y) = 0
D[u, {x, 2}]+ D[u, {y, 2}]+Divide[1,y]*D[u, y] == 0
Successful Successful - Successful [Tested: 180]
19.18.E17 2 U x 2 + 2 U y 2 + 2 U z 2 = 0 partial-derivative 𝑈 𝑥 2 partial-derivative 𝑈 𝑦 2 partial-derivative 𝑈 𝑧 2 0 {\displaystyle{\displaystyle\frac{{\partial}^{2}U}{{\partial x}^{2}}+\frac{{% \partial}^{2}U}{{\partial y}^{2}}+\frac{{\partial}^{2}U}{{\partial z}^{2}}=0}}
\pderiv[2]{U}{x}+\pderiv[2]{U}{y}+\pderiv[2]{U}{z} = 0

diff(U, [x$(2)])+ diff(U, [y$(2)])+ subs( temp=(x + y*I), diff( U, temp$(2) ) ) = 0
D[U, {x, 2}]+ D[U, {y, 2}]+ (D[U, {temp, 2}]/.temp-> (x + y*I)) == 0
Successful Successful - Successful [Tested: 180]
19.19#Ex1 A = 1 n j = 1 n z j 𝐴 1 𝑛 superscript subscript 𝑗 1 𝑛 subscript 𝑧 𝑗 {\displaystyle{\displaystyle A=\frac{1}{n}\sum_{j=1}^{n}z_{j}}}
A = \frac{1}{n}\sum_{j=1}^{n}z_{j}

A = (1)/(n)*sum(z[j], j = 1..n)
A == Divide[1,n]*Sum[Subscript[z, j], {j, 1, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
19.19#Ex2 Z j = 1 - ( z j / A ) subscript 𝑍 𝑗 1 subscript 𝑧 𝑗 𝐴 {\displaystyle{\displaystyle Z_{j}=1-(z_{j}/A)}}
Z_{j} = 1-(z_{j}/A)

Z[j] = 1 -(z[j]/A)
Subscript[Z, j] == 1 -(Subscript[z, j]/A)
Skipped - no semantic math Skipped - no semantic math - -
19.19#Ex3 E 1 ( 𝐙 ) = 0 subscript 𝐸 1 𝐙 0 {\displaystyle{\displaystyle E_{1}(\mathbf{Z})=0}}
E_{1}(\mathbf{Z}) = 0
| Z j | < 1 subscript 𝑍 𝑗 1 {\displaystyle{\displaystyle|Z_{j}|<1}}
E[1](Z) = 0
Subscript[E, 1][Z] == 0
Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex1 R F ( x , x , x ) = x - 1 / 2 Carlson-integral-RF 𝑥 𝑥 𝑥 superscript 𝑥 1 2 {\displaystyle{\displaystyle R_{F}\left(x,x,x\right)=x^{-1/2}}}
\CarlsonsymellintRF@{x}{x}{x} = x^{-1/2}

0.5*int(1/(sqrt(t+x)*sqrt(t+x)*sqrt(t+x)), t = 0..infinity) = (x)^(- 1/2)
EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]/Sqrt[x-x] == (x)^(- 1/2)
Failure Failure Successful [Tested: 3]
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
19.20#Ex2 R F ( λ x , λ y , λ z ) = λ - 1 / 2 R F ( x , y , z ) Carlson-integral-RF 𝜆 𝑥 𝜆 𝑦 𝜆 𝑧 superscript 𝜆 1 2 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{F}\left(\lambda x,\lambda y,\lambda z\right)=% \lambda^{-1/2}R_{F}\left(x,y,z\right)}}
\CarlsonsymellintRF@{\lambda x}{\lambda y}{\lambda z} = \lambda^{-1/2}\CarlsonsymellintRF@{x}{y}{z}

0.5*int(1/(sqrt(t+lambda*x)*sqrt(t+lambda*y)*sqrt(t+lambda*(x + y*I))), t = 0..infinity) = (lambda)^(- 1/2)* 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)
EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]/Sqrt[\[Lambda]*(x + y*I)-\[Lambda]*x] == \[Lambda]^(- 1/2)* EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Aborted Failure Skipped - Because timed out
Failed [180 / 180]
Result: Complex[-0.15259412278903736, 0.06775202977854555]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.05999241929777854, 0.15580825868890358]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20#Ex3 R F ( x , y , y ) = R C ( x , y ) Carlson-integral-RF 𝑥 𝑦 𝑦 Carlson-integral-RC 𝑥 𝑦 {\displaystyle{\displaystyle R_{F}\left(x,y,y\right)=R_{C}\left(x,y\right)}}
\CarlsonsymellintRF@{x}{y}{y} = \CarlsonellintRC@{x}{y}

Error
EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]/Sqrt[y-x] == 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]
Missing Macro Error Failure -
Failed [3 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[y, 0.5]}

... skip entries to safe data
19.20#Ex4 R F ( 0 , y , y ) = 1 2 π y - 1 / 2 Carlson-integral-RF 0 𝑦 𝑦 1 2 𝜋 superscript 𝑦 1 2 {\displaystyle{\displaystyle R_{F}\left(0,y,y\right)=\tfrac{1}{2}\pi y^{-1/2}}}
\CarlsonsymellintRF@{0}{y}{y} = \tfrac{1}{2}\pi y^{-1/2}

0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+y)), t = 0..infinity) = (1)/(2)*Pi*(y)^(- 1/2)
EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)]/Sqrt[y-0] == Divide[1,2]*Pi*(y)^(- 1/2)
Failure Successful
Failed [3 / 6]
Result: 2.565099660*I
Test Values: {y = -3/2}

Result: 4.442882938*I
Test Values: {y = -1/2}

... skip entries to safe data
Successful [Tested: 6]
19.20#Ex5 R F ( 0 , 0 , z ) = Carlson-integral-RF 0 0 𝑧 {\displaystyle{\displaystyle R_{F}\left(0,0,z\right)=\infty}}
\CarlsonsymellintRF@{0}{0}{z} = \infty

0.5*int(1/(sqrt(t+0)*sqrt(t+0)*sqrt(t+z)), t = 0..infinity) = infinity
EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]/Sqrt[z-0] == Infinity
Failure Failure Skipped - Because timed out
Failed [7 / 7]
Result: Indeterminate
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20.E2 0 1 d t 1 - t 4 = R F ( 0 , 1 , 2 ) superscript subscript 0 1 𝑡 1 superscript 𝑡 4 Carlson-integral-RF 0 1 2 {\displaystyle{\displaystyle\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t^{4}}}=R_{% F}\left(0,1,2\right)}}
\int_{0}^{1}\frac{\diff{t}}{\sqrt{1-t^{4}}} = \CarlsonsymellintRF@{0}{1}{2}

int((1)/(sqrt(1 - (t)^(4))), t = 0..1) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity)
Integrate[Divide[1,Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0]
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
19.20.E2 R F ( 0 , 1 , 2 ) = ( Γ ( 1 4 ) ) 2 4 ( 2 π ) 1 / 2 Carlson-integral-RF 0 1 2 superscript Euler-Gamma 1 4 2 4 superscript 2 𝜋 1 2 {\displaystyle{\displaystyle R_{F}\left(0,1,2\right)=\frac{\left(\Gamma\left(% \frac{1}{4}\right)\right)^{2}}{4(2\pi)^{1/2}}}}
\CarlsonsymellintRF@{0}{1}{2} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}}

0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) = ((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/2))
EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] == Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/2)]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 1]
19.20.E2 ( Γ ( 1 4 ) ) 2 4 ( 2 π ) 1 / 2 = 1.31102 87771 46059 90523 superscript Euler-Gamma 1 4 2 4 superscript 2 𝜋 1 2 1.31102 87771 46059 90523 {\displaystyle{\displaystyle\frac{\left(\Gamma\left(\frac{1}{4}\right)\right)^% {2}}{4(2\pi)^{1/2}}=1.31102\;87771\;46059\;90523\;\dots}}
\frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{4(2\pi)^{1/2}} = 1.31102\;87771\;46059\;90523\;\dots

((GAMMA((1)/(4)))^(2))/(4*(2*Pi)^(1/2)) = 1.31102877714605990523
Divide[(Gamma[Divide[1,4]])^(2),4*(2*Pi)^(1/2)] == 1.31102877714605990523
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
19.20#Ex6 R G ( x , x , x ) = x 1 / 2 Carlson-integral-RG 𝑥 𝑥 𝑥 superscript 𝑥 1 2 {\displaystyle{\displaystyle R_{G}\left(x,x,x\right)=x^{1/2}}}
\CarlsonsymellintRG@{x}{x}{x} = x^{1/2}

Error
Sqrt[x-x]*(EllipticE[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+(Cot[ArcCos[Sqrt[x/x]]])^2*EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]+Cot[ArcCos[Sqrt[x/x]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x]]]^2]) == (x)^(1/2)
Missing Macro Error Failure -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
19.20#Ex7 R G ( λ x , λ y , λ z ) = λ 1 / 2 R G ( x , y , z ) Carlson-integral-RG 𝜆 𝑥 𝜆 𝑦 𝜆 𝑧 superscript 𝜆 1 2 Carlson-integral-RG 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{G}\left(\lambda x,\lambda y,\lambda z\right)=% \lambda^{1/2}R_{G}\left(x,y,z\right)}}
\CarlsonsymellintRG@{\lambda x}{\lambda y}{\lambda z} = \lambda^{1/2}\CarlsonsymellintRG@{x}{y}{z}

Error
Sqrt[\[Lambda]*(x + y*I)-\[Lambda]*x]*(EllipticE[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]+(Cot[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]]])^2*EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]+Cot[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]]]^2]) == \[Lambda]^(1/2)* Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2])
Missing Macro Error Aborted -
Failed [180 / 180]
Result: Plus[Times[Complex[-0.75, 0.4330127018922193], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.75, -0.43301270189221935], Plus[Complex[0.469094970899074, 0.7900882534928779], Times[Complex[0.1542171038749957, -1.1011185950707625], Power[Plus[1.0, Times[Complex[1.25, -2.25], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Times[Complex[-0.8365163037378078, -0.22414386804201336], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.8365163037378078, 0.22414386804201325], Plus[Complex[0.46909497089907387, 0.7900882534928779], Times[Complex[0.1542171038749957, -1.1011185950707625], Power[Plus[1.0, Times[Complex[1.25, -2.25], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20#Ex8 R G ( 0 , y , y ) = 1 4 π y 1 / 2 Carlson-integral-RG 0 𝑦 𝑦 1 4 𝜋 superscript 𝑦 1 2 {\displaystyle{\displaystyle R_{G}\left(0,y,y\right)=\tfrac{1}{4}\pi y^{1/2}}}
\CarlsonsymellintRG@{0}{y}{y} = \tfrac{1}{4}\pi y^{1/2}

Error
Sqrt[y-0]*(EllipticE[ArcCos[Sqrt[0/y]],(y-y)/(y-0)]+(Cot[ArcCos[Sqrt[0/y]]])^2*EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)]+Cot[ArcCos[Sqrt[0/y]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/y]]]^2]) == Divide[1,4]*Pi*(y)^(1/2)
Missing Macro Error Failure -
Failed [6 / 6]
Result: Complex[0.0, 0.961912372621398]
Test Values: {Rule[y, -1.5]}

Result: 0.961912372621398
Test Values: {Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex9 R G ( 0 , 0 , z ) = 1 2 z 1 / 2 Carlson-integral-RG 0 0 𝑧 1 2 superscript 𝑧 1 2 {\displaystyle{\displaystyle R_{G}\left(0,0,z\right)=\tfrac{1}{2}z^{1/2}}}
\CarlsonsymellintRG@{0}{0}{z} = \tfrac{1}{2}z^{1/2}

Error
Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == Divide[1,2]*(z)^(1/2)
Missing Macro Error Failure -
Failed [7 / 7]
Result: Indeterminate
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20.E5 2 R G ( x , y , y ) = y R C ( x , y ) + x 2 Carlson-integral-RG 𝑥 𝑦 𝑦 𝑦 Carlson-integral-RC 𝑥 𝑦 𝑥 {\displaystyle{\displaystyle 2R_{G}\left(x,y,y\right)=yR_{C}\left(x,y\right)+% \sqrt{x}}}
2\CarlsonsymellintRG@{x}{y}{y} = y\CarlsonellintRC@{x}{y}+\sqrt{x}

Error
2*Sqrt[y-x]*(EllipticE[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]+(Cot[ArcCos[Sqrt[x/y]]])^2*EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]+Cot[ArcCos[Sqrt[x/y]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/y]]]^2]) == y*1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]+Sqrt[x]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Plus[Complex[-1.988036787975128, -1.360349523175663], Times[Complex[0.0, 3.4641016151377544], Plus[Complex[0.7853981633974483, -0.44068679350977147], Times[Complex[0.0, 0.7071067811865475], Power[Plus[1.0, Times[-2.0, Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex10 R J ( x , x , x , x ) = x - 3 / 2 Carlson-integral-RJ 𝑥 𝑥 𝑥 𝑥 superscript 𝑥 3 2 {\displaystyle{\displaystyle R_{J}\left(x,x,x,x\right)=x^{-3/2}}}
\CarlsonsymellintRJ@{x}{x}{x}{x} = x^{-3/2}

Error
3*(x-x)/(x-x)*(EllipticPi[(x-x)/(x-x),ArcCos[Sqrt[x/x]],(x-x)/(x-x)]-EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)])/Sqrt[x-x] == (x)^(- 3/2)
Missing Macro Error Failure -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
19.20#Ex11 R J ( λ x , λ y , λ z , λ p ) = λ - 3 / 2 R J ( x , y , z , p ) Carlson-integral-RJ 𝜆 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 𝑝 superscript 𝜆 3 2 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 {\displaystyle{\displaystyle R_{J}\left(\lambda x,\lambda y,\lambda z,\lambda p% \right)=\lambda^{-3/2}R_{J}\left(x,y,z,p\right)}}
\CarlsonsymellintRJ@{\lambda x}{\lambda y}{\lambda z}{\lambda p} = \lambda^{-3/2}\CarlsonsymellintRJ@{x}{y}{z}{p}

Error
3*(\[Lambda]*(x + y*I)-\[Lambda]*x)/(\[Lambda]*(x + y*I)-\[Lambda]*p)*(EllipticPi[(\[Lambda]*(x + y*I)-\[Lambda]*p)/(\[Lambda]*(x + y*I)-\[Lambda]*x),ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]-EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)])/Sqrt[\[Lambda]*(x + y*I)-\[Lambda]*x] == \[Lambda]^(- 3/2)* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[0.8261798979421457, -0.5239696989052641]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.5256524914787406, -1.066611458671583]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20#Ex12 R J ( x , y , z , z ) = R D ( x , y , z ) Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑧 Carlson-integral-RD 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{J}\left(x,y,z,z\right)=R_{D}\left(x,y,z\right)}}
\CarlsonsymellintRJ@{x}{y}{z}{z} = \CarlsonsymellintRD@{x}{y}{z}

Error
3*(x + y*I-x)/(x + y*I-x + y*I)*(EllipticPi[(x + y*I-x + y*I)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[-0.37100270206594405, 0.09129381935817127]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-0.5182279531589904, -0.0513630200054771]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex13 R J ( 0 , 0 , z , p ) = Carlson-integral-RJ 0 0 𝑧 𝑝 {\displaystyle{\displaystyle R_{J}\left(0,0,z,p\right)=\infty}}
\CarlsonsymellintRJ@{0}{0}{z}{p} = \infty

Error
3*(z-0)/(z-p)*(EllipticPi[(z-p)/(z-0),ArcCos[Sqrt[0/z]],(z-0)/(z-0)]-EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)])/Sqrt[z-0] == Infinity
Missing Macro Error Failure -
Failed [70 / 70]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20#Ex14 R J ( x , x , x , p ) = R D ( p , p , x ) Carlson-integral-RJ 𝑥 𝑥 𝑥 𝑝 Carlson-integral-RD 𝑝 𝑝 𝑥 {\displaystyle{\displaystyle R_{J}\left(x,x,x,p\right)=R_{D}\left(p,p,x\right)}}
\CarlsonsymellintRJ@{x}{x}{x}{p} = \CarlsonsymellintRD@{p}{p}{x}
x p , x p 0 formulae-sequence 𝑥 𝑝 𝑥 𝑝 0 {\displaystyle{\displaystyle x\neq p,xp\neq 0}}
Error
3*(x-x)/(x-p)*(EllipticPi[(x-p)/(x-x),ArcCos[Sqrt[x/x]],(x-x)/(x-x)]-EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)])/Sqrt[x-x] == 3*(EllipticF[ArcCos[Sqrt[p/x]],(x-p)/(x-p)]-EllipticE[ArcCos[Sqrt[p/x]],(x-p)/(x-p)])/((x-p)*(x-p)^(1/2))
Missing Macro Error Failure -
Failed [27 / 27]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 0.5]}

... skip entries to safe data
19.20#Ex14 R D ( p , p , x ) = 3 x - p ( R C ( x , p ) - 1 x ) Carlson-integral-RD 𝑝 𝑝 𝑥 3 𝑥 𝑝 Carlson-integral-RC 𝑥 𝑝 1 𝑥 {\displaystyle{\displaystyle R_{D}\left(p,p,x\right)=\frac{3}{x-p}\left(R_{C}% \left(x,p\right)-\frac{1}{\sqrt{x}}\right)}}
\CarlsonsymellintRD@{p}{p}{x} = \frac{3}{x-p}\left(\CarlsonellintRC@{x}{p}-\frac{1}{\sqrt{x}}\right)
x p , x p 0 formulae-sequence 𝑥 𝑝 𝑥 𝑝 0 {\displaystyle{\displaystyle x\neq p,xp\neq 0}}
Error
3*(EllipticF[ArcCos[Sqrt[p/x]],(x-p)/(x-p)]-EllipticE[ArcCos[Sqrt[p/x]],(x-p)/(x-p)])/((x-p)*(x-p)^(1/2)) == Divide[3,x - p]*(1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]-Divide[1,Sqrt[x]])
Missing Macro Error Failure -
Failed [9 / 27]
Result: Complex[1.0177225554447191, 2.220446049250313*^-16]
Test Values: {Rule[p, -1.5], Rule[x, 1.5]}

Result: Complex[1.1652542988181402, 6.661338147750939*^-16]
Test Values: {Rule[p, -1.5], Rule[x, 0.5]}

... skip entries to safe data
19.20#Ex15 R J ( 0 , y , y , p ) = 3 π 2 ( y p + p y ) Carlson-integral-RJ 0 𝑦 𝑦 𝑝 3 𝜋 2 𝑦 𝑝 𝑝 𝑦 {\displaystyle{\displaystyle R_{J}\left(0,y,y,p\right)=\frac{3\pi}{2(y\sqrt{p}% +p\sqrt{y})}}}
\CarlsonsymellintRJ@{0}{y}{y}{p} = \frac{3\pi}{2(y\sqrt{p}+p\sqrt{y})}
p > 0 𝑝 0 {\displaystyle{\displaystyle p>0}}
Error
3*(y-0)/(y-p)*(EllipticPi[(y-p)/(y-0),ArcCos[Sqrt[0/y]],(y-y)/(y-0)]-EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)])/Sqrt[y-0] == Divide[3*Pi,2*(y*Sqrt[p]+ p*Sqrt[y])]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[-0.6412749150809316, 3.2063745754046598]
Test Values: {Rule[p, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[p, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex16 R J ( 0 , y , y , - q ) = - 3 π 2 y ( y + q ) Carlson-integral-RJ 0 𝑦 𝑦 𝑞 3 𝜋 2 𝑦 𝑦 𝑞 {\displaystyle{\displaystyle R_{J}\left(0,y,y,-q\right)=\frac{-3\pi}{2\sqrt{y}% (y+q)}}}
\CarlsonsymellintRJ@{0}{y}{y}{-q} = \frac{-3\pi}{2\sqrt{y}(y+q)}
q > 0 𝑞 0 {\displaystyle{\displaystyle q>0}}
Error
3*(y-0)/(y-- q)*(EllipticPi[(y-- q)/(y-0),ArcCos[Sqrt[0/y]],(y-y)/(y-0)]-EllipticF[ArcCos[Sqrt[0/y]],(y-y)/(y-0)])/Sqrt[y-0] == Divide[- 3*Pi,2*Sqrt[y]*(y + q)]
Missing Macro Error Failure -
Failed [18 / 18]
Result: DirectedInfinity[]
Test Values: {Rule[q, 1.5], Rule[y, -1.5]}

Result: Plus[1.282549830161864, Times[2.449489742783178, Plus[-1.5707963267948966, Times[1.5707963267948966, Power[Plus[1.0, Times[-1.0, Decrement[1.5]]], Rational[-1, 2]]]], Power[Decrement[1.5], -1]]]
Test Values: {Rule[q, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex17 R J ( x , y , y , p ) = 3 p - y ( R C ( x , y ) - R C ( x , p ) ) Carlson-integral-RJ 𝑥 𝑦 𝑦 𝑝 3 𝑝 𝑦 Carlson-integral-RC 𝑥 𝑦 Carlson-integral-RC 𝑥 𝑝 {\displaystyle{\displaystyle R_{J}\left(x,y,y,p\right)=\frac{3}{p-y}(R_{C}% \left(x,y\right)-R_{C}\left(x,p\right))}}
\CarlsonsymellintRJ@{x}{y}{y}{p} = \frac{3}{p-y}(\CarlsonellintRC@{x}{y}-\CarlsonellintRC@{x}{p})
p y 𝑝 𝑦 {\displaystyle{\displaystyle p\neq y}}
Error
3*(y-x)/(y-p)*(EllipticPi[(y-p)/(y-x),ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/Sqrt[y-x] == Divide[3,p - y]*(1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]- 1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)])
Missing Macro Error Aborted -
Failed [157 / 162]
Result: Complex[0.40904124998304914, 6.107600792054881]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex18 R J ( x , y , y , y ) = R D ( x , y , y ) Carlson-integral-RJ 𝑥 𝑦 𝑦 𝑦 Carlson-integral-RD 𝑥 𝑦 𝑦 {\displaystyle{\displaystyle R_{J}\left(x,y,y,y\right)=R_{D}\left(x,y,y\right)}}
\CarlsonsymellintRJ@{x}{y}{y}{y} = \CarlsonsymellintRD@{x}{y}{y}

Error
3*(y-x)/(y-y)*(EllipticPi[(y-y)/(y-x),ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/Sqrt[y-x] == 3*(EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticE[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/((y-y)*(y-x)^(1/2))
Missing Macro Error Failure -
Failed [18 / 18]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20.E9 R J ( 0 , y , z , + y z ) = + 3 2 y z R F ( 0 , y , z ) Carlson-integral-RJ 0 𝑦 𝑧 𝑦 𝑧 3 2 𝑦 𝑧 Carlson-integral-RF 0 𝑦 𝑧 {\displaystyle{\displaystyle R_{J}\left(0,y,z,+\sqrt{yz}\right)=+\frac{3}{2% \sqrt{yz}}R_{F}\left(0,y,z\right)}}
\CarlsonsymellintRJ@{0}{y}{z}{+\sqrt{yz}} = +\frac{3}{2\sqrt{yz}}\CarlsonsymellintRF@{0}{y}{z}

Error
3*(x + y*I-0)/(x + y*I-+Sqrt[y*(x + y*I)])*(EllipticPi[(x + y*I-+Sqrt[y*(x + y*I)])/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == +Divide[3,2*Sqrt[y*(x + y*I)]]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[-0.9141259292931587, -0.9706303463287326]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-4.407772019377616, 0.7576222483343515]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20.E9 R J ( 0 , y , z , - y z ) = - 3 2 y z R F ( 0 , y , z ) Carlson-integral-RJ 0 𝑦 𝑧 𝑦 𝑧 3 2 𝑦 𝑧 Carlson-integral-RF 0 𝑦 𝑧 {\displaystyle{\displaystyle R_{J}\left(0,y,z,-\sqrt{yz}\right)=-\frac{3}{2% \sqrt{yz}}R_{F}\left(0,y,z\right)}}
\CarlsonsymellintRJ@{0}{y}{z}{-\sqrt{yz}} = -\frac{3}{2\sqrt{yz}}\CarlsonsymellintRF@{0}{y}{z}

Error
3*(x + y*I-0)/(x + y*I--Sqrt[y*(x + y*I)])*(EllipticPi[(x + y*I--Sqrt[y*(x + y*I)])/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == -Divide[3,2*Sqrt[y*(x + y*I)]]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[0.1671030668705316, -0.09828926199489627]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-0.7387931095854892, 1.0731895314108653]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex19 lim p 0 + p R J ( 0 , y , z , p ) = 3 π 2 y z subscript 𝑝 limit-from 0 𝑝 Carlson-integral-RJ 0 𝑦 𝑧 𝑝 3 𝜋 2 𝑦 𝑧 {\displaystyle{\displaystyle\lim_{p\to 0+}\sqrt{p}R_{J}\left(0,y,z,p\right)=% \frac{3\pi}{2\sqrt{yz}}}}
\lim_{p\to 0+}\sqrt{p}\CarlsonsymellintRJ@{0}{y}{z}{p} = \frac{3\pi}{2\sqrt{yz}}

Error
Limit[Sqrt[p]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0], p -> 0, Direction -> "FromAbove", GenerateConditions->None] == Divide[3*Pi,2*Sqrt[y*(x + y*I)]]
Missing Macro Error Aborted - Skipped - Because timed out
19.20#Ex20 lim p 0 - R J ( 0 , y , z , p ) = - R D ( 0 , y , z ) - R D ( 0 , z , y ) subscript 𝑝 limit-from 0 Carlson-integral-RJ 0 𝑦 𝑧 𝑝 Carlson-integral-RD 0 𝑦 𝑧 Carlson-integral-RD 0 𝑧 𝑦 {\displaystyle{\displaystyle\lim_{p\to 0-}R_{J}\left(0,y,z,p\right)={-R_{D}% \left(0,y,z\right)-R_{D}\left(0,z,y\right)}}}
\lim_{p\to 0-}\CarlsonsymellintRJ@{0}{y}{z}{p} = {-\CarlsonsymellintRD@{0}{y}{z}-\CarlsonsymellintRD@{0}{z}{y}}

Error
Limit[3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0], p -> 0, Direction -> "FromBelow", GenerateConditions->None] == - 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))- 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))
Missing Macro Error Aborted - Skipped - Because timed out
19.20#Ex20 - R D ( 0 , y , z ) - R D ( 0 , z , y ) = - 6 y z R G ( 0 , y , z ) Carlson-integral-RD 0 𝑦 𝑧 Carlson-integral-RD 0 𝑧 𝑦 6 𝑦 𝑧 Carlson-integral-RG 0 𝑦 𝑧 {\displaystyle{\displaystyle{-R_{D}\left(0,y,z\right)-R_{D}\left(0,z,y\right)}% =\frac{-6}{yz}R_{G}\left(0,y,z\right)}}
{-\CarlsonsymellintRD@{0}{y}{z}-\CarlsonsymellintRD@{0}{z}{y}} = \frac{-6}{yz}\CarlsonsymellintRG@{0}{y}{z}

Error
- 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))- 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2)) == Divide[- 6,y*(x + y*I)]*Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2])
Missing Macro Error Failure -
Failed [18 / 18]
Result: Plus[Complex[1.5111033799217843, -0.47027281525563985], Times[Complex[-2.537302274660022, -1.050985014004285], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Plus[Complex[-0.13967540286775149, -0.9399293972008751], Times[Complex[2.537302274660022, -1.050985014004285], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20.E12 lim p + p R J ( x , y , z , p ) = 3 R F ( x , y , z ) subscript 𝑝 𝑝 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 3 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\lim_{p\to+\infty}pR_{J}\left(x,y,z,p\right)=3R_{F% }\left(x,y,z\right)}}
\lim_{p\to+\infty}p\CarlsonsymellintRJ@{x}{y}{z}{p} = 3\CarlsonsymellintRF@{x}{y}{z}

Error
Limit[p*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], p -> + Infinity, GenerateConditions->None] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Missing Macro Error Aborted - Skipped - Because timed out
19.20.E12 lim p - p R J ( x , y , z , p ) = 3 R F ( x , y , z ) subscript 𝑝 𝑝 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 3 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\lim_{p\to-\infty}pR_{J}\left(x,y,z,p\right)=3R_{F% }\left(x,y,z\right)}}
\lim_{p\to-\infty}p\CarlsonsymellintRJ@{x}{y}{z}{p} = 3\CarlsonsymellintRF@{x}{y}{z}

Error
Limit[p*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], p -> - Infinity, GenerateConditions->None] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Missing Macro Error Aborted - Skipped - Because timed out
19.20.E13 2 ( p - x ) R J ( x , y , z , p ) = 3 R F ( x , y , z ) - 3 x R C ( y z , p 2 ) 2 𝑝 𝑥 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 3 Carlson-integral-RF 𝑥 𝑦 𝑧 3 𝑥 Carlson-integral-RC 𝑦 𝑧 superscript 𝑝 2 {\displaystyle{\displaystyle 2(p-x)R_{J}\left(x,y,z,p\right)=3R_{F}\left(x,y,z% \right)-3\sqrt{x}R_{C}\left(yz,p^{2}\right)}}
2(p-x)\CarlsonsymellintRJ@{x}{y}{z}{p} = 3\CarlsonsymellintRF@{x}{y}{z}-3\sqrt{x}\CarlsonellintRC@{yz}{p^{2}}

Error
2*(p - x)*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*Sqrt[x]*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y*(x + y*I))/((p)^(2))]
Missing Macro Error Aborted -
Failed [180 / 180]
Result: Complex[3.989482635019833, -4.816521080718802]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[5.152296981249878, -0.7434346709776987]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20.E14 ( q + z ) R J ( x , y , z , - q ) = ( p - z ) R J ( x , y , z , p ) - 3 R F ( x , y , z ) + 3 ( x y z x y + p q ) 1 / 2 R C ( x y + p q , p q ) 𝑞 𝑧 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑞 𝑝 𝑧 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 3 Carlson-integral-RF 𝑥 𝑦 𝑧 3 superscript 𝑥 𝑦 𝑧 𝑥 𝑦 𝑝 𝑞 1 2 Carlson-integral-RC 𝑥 𝑦 𝑝 𝑞 𝑝 𝑞 {\displaystyle{\displaystyle(q+z)R_{J}\left(x,y,z,-q\right)=(p-z)R_{J}\left(x,% y,z,p\right)-3R_{F}\left(x,y,z\right)+3\left(\frac{xyz}{xy+pq}\right)^{1/2}R_{% C}\left(xy+pq,pq\right)}}
(q+z)\CarlsonsymellintRJ@{x}{y}{z}{-q} = (p-z)\CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonsymellintRF@{x}{y}{z}+3\left(\frac{xyz}{xy+pq}\right)^{1/2}\CarlsonellintRC@{xy+pq}{pq}

Error
(q +(x + y*I))*3*(x + y*I-x)/(x + y*I-- q)*(EllipticPi[(x + y*I-- q)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == (p -(x + y*I))*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]- 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]+ 3*(Divide[x*y*(x + y*I),x*y + p*q])^(1/2)* 1/Sqrt[p*q]*Hypergeometric2F1[1/2,1/2,3/2,1-(x*y + p*q)/(p*q)]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Complex[-3.4116287326863786, 8.252883937385896]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-8.900891250450524, -2.579723477019983]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex21 q > 0 𝑞 0 {\displaystyle{\displaystyle q>0}}
q > 0

q > 0
q > 0
Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex22 p = z ( x + y + q ) - x y z + q 𝑝 𝑧 𝑥 𝑦 𝑞 𝑥 𝑦 𝑧 𝑞 {\displaystyle{\displaystyle p=\frac{z(x+y+q)-xy}{z+q}}}
p = \frac{z(x+y+q)-xy}{z+q}

p = ((x + y*I)*(x + y + q)- x*y)/((x + y*I)+ q)
p == Divide[(x + y*I)*(x + y + q)- x*y,(x + y*I)+ q]
Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex23 p = w y + ( 1 - w ) z 𝑝 𝑤 𝑦 1 𝑤 𝑧 {\displaystyle{\displaystyle p=wy+(1-w)z}}
p = wy+(1-w)z

p = w*y +(1 - w)*(x + y*I)
p == w*y +(1 - w)*(x + y*I)
Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex24 w = z - x z + q 𝑤 𝑧 𝑥 𝑧 𝑞 {\displaystyle{\displaystyle w=\frac{z-x}{z+q}}}
w = \frac{z-x}{z+q}

w = ((x + y*I)- x)/((x + y*I)+ q)
w == Divide[(x + y*I)- x,(x + y*I)+ q]
Skipped - no semantic math Skipped - no semantic math - -
19.20#Ex25 0 < w 0 𝑤 {\displaystyle{\displaystyle 0<w}}
0 < w

0 < w
0 < w
Skipped - no semantic math Skipped - no semantic math - -
19.20.E17 ( q + z ) R J ( 0 , y , z , - q ) = ( p - z ) R J ( 0 , y , z , p ) - 3 R F ( 0 , y , z ) 𝑞 𝑧 Carlson-integral-RJ 0 𝑦 𝑧 𝑞 𝑝 𝑧 Carlson-integral-RJ 0 𝑦 𝑧 𝑝 3 Carlson-integral-RF 0 𝑦 𝑧 {\displaystyle{\displaystyle(q+z)R_{J}\left(0,y,z,-q\right)=(p-z)R_{J}\left(0,% y,z,p\right)-3R_{F}\left(0,y,z\right)}}
(q+z)\CarlsonsymellintRJ@{0}{y}{z}{-q} = (p-z)\CarlsonsymellintRJ@{0}{y}{z}{p}-3\CarlsonsymellintRF@{0}{y}{z}
p = z ( y + q ) / ( z + q ) , w = z / ( z + q ) formulae-sequence 𝑝 𝑧 𝑦 𝑞 𝑧 𝑞 𝑤 𝑧 𝑧 𝑞 {\displaystyle{\displaystyle p=z(y+q)/(z+q),w=z/(z+q)}}
Error
(q +(x + y*I))*3*(x + y*I-0)/(x + y*I-- q)*(EllipticPi[(x + y*I-- q)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == (p -(x + y*I))*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0]- 3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-3.556352843352318, 3.1308549992075583]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-7.694083210877473, -5.44447388199589]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20#Ex26 R D ( x , x , x ) = x - 3 / 2 Carlson-integral-RD 𝑥 𝑥 𝑥 superscript 𝑥 3 2 {\displaystyle{\displaystyle R_{D}\left(x,x,x\right)=x^{-3/2}}}
\CarlsonsymellintRD@{x}{x}{x} = x^{-3/2}

Error
3*(EllipticF[ArcCos[Sqrt[x/x]],(x-x)/(x-x)]-EllipticE[ArcCos[Sqrt[x/x]],(x-x)/(x-x)])/((x-x)*(x-x)^(1/2)) == (x)^(- 3/2)
Missing Macro Error Failure -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
19.20#Ex27 R D ( λ x , λ y , λ z ) = λ - 3 / 2 R D ( x , y , z ) Carlson-integral-RD 𝜆 𝑥 𝜆 𝑦 𝜆 𝑧 superscript 𝜆 3 2 Carlson-integral-RD 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{D}\left(\lambda x,\lambda y,\lambda z\right)=% \lambda^{-3/2}R_{D}\left(x,y,z\right)}}
\CarlsonsymellintRD@{\lambda x}{\lambda y}{\lambda z} = \lambda^{-3/2}\CarlsonsymellintRD@{x}{y}{z}

Error
3*(EllipticF[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)]-EllipticE[ArcCos[Sqrt[\[Lambda]*x/\[Lambda]*(x + y*I)]],(\[Lambda]*(x + y*I)-\[Lambda]*y)/(\[Lambda]*(x + y*I)-\[Lambda]*x)])/((\[Lambda]*(x + y*I)-\[Lambda]*y)*(\[Lambda]*(x + y*I)-\[Lambda]*x)^(1/2)) == \[Lambda]^(- 3/2)* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[1.0149076549010991, -0.8161311339182895]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.2947399441897933, -0.14055622592761496]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20#Ex29 R D ( 0 , 0 , z ) = Carlson-integral-RD 0 0 𝑧 {\displaystyle{\displaystyle R_{D}\left(0,0,z\right)=\infty}}
\CarlsonsymellintRD@{0}{0}{z} = \infty

Error
3*(EllipticF[ArcCos[Sqrt[0/z]],(z-0)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-0)/(z-0)])/((z-0)*(z-0)^(1/2)) == Infinity
Missing Macro Error Failure -
Failed [7 / 7]
Result: Indeterminate
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.20.E20 R D ( x , y , y ) = 3 2 ( y - x ) ( R C ( x , y ) - x y ) Carlson-integral-RD 𝑥 𝑦 𝑦 3 2 𝑦 𝑥 Carlson-integral-RC 𝑥 𝑦 𝑥 𝑦 {\displaystyle{\displaystyle R_{D}\left(x,y,y\right)=\frac{3}{2(y-x)}\left(R_{% C}\left(x,y\right)-\frac{\sqrt{x}}{y}\right)}}
\CarlsonsymellintRD@{x}{y}{y} = \frac{3}{2(y-x)}\left(\CarlsonellintRC@{x}{y}-\frac{\sqrt{x}}{y}\right)
x y , y 0 formulae-sequence 𝑥 𝑦 𝑦 0 {\displaystyle{\displaystyle x\neq y,y\neq 0}}
Error
3*(EllipticF[ArcCos[Sqrt[x/y]],(y-y)/(y-x)]-EllipticE[ArcCos[Sqrt[x/y]],(y-y)/(y-x)])/((y-y)*(y-x)^(1/2)) == Divide[3,2*(y - x)]*(1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]-Divide[Sqrt[x],y])
Missing Macro Error Failure -
Failed [15 / 15]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.20.E21 R D ( x , x , z ) = 3 z - x ( R C ( z , x ) - 1 z ) Carlson-integral-RD 𝑥 𝑥 𝑧 3 𝑧 𝑥 Carlson-integral-RC 𝑧 𝑥 1 𝑧 {\displaystyle{\displaystyle R_{D}\left(x,x,z\right)=\frac{3}{z-x}\left(R_{C}% \left(z,x\right)-\frac{1}{\sqrt{z}}\right)}}
\CarlsonsymellintRD@{x}{x}{z} = \frac{3}{z-x}\left(\CarlsonellintRC@{z}{x}-\frac{1}{\sqrt{z}}\right)
x z , x z 0 formulae-sequence 𝑥 𝑧 𝑥 𝑧 0 {\displaystyle{\displaystyle x\neq z,xz\neq 0}}
Error
3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-x)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-x)/(x + y*I-x)])/((x + y*I-x)*(x + y*I-x)^(1/2)) == Divide[3,(x + y*I)- x]*(1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + y*I)/(x)]-Divide[1,Sqrt[x + y*I]])
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[0.13486015646372063, -0.8506635330353051]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[0.13486015646372096, 0.8506635330353054]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.20.E22 0 1 t 2 d t 1 - t 4 = 1 3 R D ( 0 , 2 , 1 ) superscript subscript 0 1 superscript 𝑡 2 𝑡 1 superscript 𝑡 4 1 3 Carlson-integral-RD 0 2 1 {\displaystyle{\displaystyle\int_{0}^{1}\frac{t^{2}\mathrm{d}t}{\sqrt{1-t^{4}}% }=\tfrac{1}{3}R_{D}\left(0,2,1\right)}}
\int_{0}^{1}\frac{t^{2}\diff{t}}{\sqrt{1-t^{4}}} = \tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1}

Error
Integrate[Divide[(t)^(2),Sqrt[1 - (t)^(4)]], {t, 0, 1}, GenerateConditions->None] == Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2))
Missing Macro Error Successful Skip - symbolical successful subtest Successful [Tested: 1]
19.20.E22 1 3 R D ( 0 , 2 , 1 ) = ( Γ ( 3 4 ) ) 2 ( 2 π ) 1 / 2 1 3 Carlson-integral-RD 0 2 1 superscript Euler-Gamma 3 4 2 superscript 2 𝜋 1 2 {\displaystyle{\displaystyle\tfrac{1}{3}R_{D}\left(0,2,1\right)=\frac{\left(% \Gamma\left(\frac{3}{4}\right)\right)^{2}}{(2\pi)^{1/2}}}}
\tfrac{1}{3}\CarlsonsymellintRD@{0}{2}{1} = \frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}}

Error
Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-2)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-2)/(1-0)])/((1-2)*(1-0)^(1/2)) == Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/2)]
Missing Macro Error Successful Skip - symbolical successful subtest Successful [Tested: 1]
19.20.E22 ( Γ ( 3 4 ) ) 2 ( 2 π ) 1 / 2 = 0.59907 01173 67796 10371 superscript Euler-Gamma 3 4 2 superscript 2 𝜋 1 2 0.59907 01173 67796 10371 {\displaystyle{\displaystyle\frac{\left(\Gamma\left(\frac{3}{4}\right)\right)^% {2}}{(2\pi)^{1/2}}=0.59907\;01173\;67796\;10371\dots}}
\frac{\left(\EulerGamma@{\frac{3}{4}}\right)^{2}}{(2\pi)^{1/2}} = 0.59907\;01173\;67796\;10371\dots

((GAMMA((3)/(4)))^(2))/((2*Pi)^(1/2)) = 0.59907011736779610371
Divide[(Gamma[Divide[3,4]])^(2),(2*Pi)^(1/2)] == 0.59907011736779610371
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
19.21.E1 R F ( 0 , z + 1 , z ) R D ( 0 , z + 1 , 1 ) + R D ( 0 , z + 1 , z ) R F ( 0 , z + 1 , 1 ) = 3 π / ( 2 z ) Carlson-integral-RF 0 𝑧 1 𝑧 Carlson-integral-RD 0 𝑧 1 1 Carlson-integral-RD 0 𝑧 1 𝑧 Carlson-integral-RF 0 𝑧 1 1 3 𝜋 2 𝑧 {\displaystyle{\displaystyle R_{F}\left(0,z+1,z\right)R_{D}\left(0,z+1,1\right% )+R_{D}\left(0,z+1,z\right)R_{F}\left(0,z+1,1\right)=3\pi/(2z)}}
\CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)

Error
EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]/Sqrt[z-0]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)])/((1-z + 1)*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)])/((z-z + 1)*(z-0)^(1/2))*EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]/Sqrt[1-0] == 3*Pi/(2*z)
Missing Macro Error Failure -
Failed [7 / 7]
Result: Complex[-18.895019118218656, -13.266297761785948]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-2.405668177707024, 11.584123712813607]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.21.E2 3 R F ( 0 , y , z ) = z R D ( 0 , y , z ) + y R D ( 0 , z , y ) 3 Carlson-integral-RF 0 𝑦 𝑧 𝑧 Carlson-integral-RD 0 𝑦 𝑧 𝑦 Carlson-integral-RD 0 𝑧 𝑦 {\displaystyle{\displaystyle 3R_{F}\left(0,y,z\right)=zR_{D}\left(0,y,z\right)% +yR_{D}\left(0,z,y\right)}}
3\CarlsonsymellintRF@{0}{y}{z} = z\CarlsonsymellintRD@{0}{y}{z}+y\CarlsonsymellintRD@{0}{z}{y}

Error
3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == (x + y*I)*3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[-0.11482200178525792, 3.077769310376559]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[0.9930498831204495, -3.2293137034341144]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E3 6 R G ( 0 , y , z ) = y z ( R D ( 0 , y , z ) + R D ( 0 , z , y ) ) 6 Carlson-integral-RG 0 𝑦 𝑧 𝑦 𝑧 Carlson-integral-RD 0 𝑦 𝑧 Carlson-integral-RD 0 𝑧 𝑦 {\displaystyle{\displaystyle 6R_{G}\left(0,y,z\right)=yz(R_{D}\left(0,y,z% \right)+R_{D}\left(0,z,y\right))}}
6\CarlsonsymellintRG@{0}{y}{z} = yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y})

Error
6*Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2)))
Missing Macro Error Failure -
Failed [18 / 18]
Result: Plus[Complex[-2.3418687704988255, 4.458096439149204], Times[Complex[8.07364639949469, -3.344213836475408], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Plus[Complex[1.800571487249528, -2.4291108001544095], Times[Complex[8.07364639949469, 3.344213836475408], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E3 y z ( R D ( 0 , y , z ) + R D ( 0 , z , y ) ) = 3 z R F ( 0 , y , z ) + z ( y - z ) R D ( 0 , y , z ) 𝑦 𝑧 Carlson-integral-RD 0 𝑦 𝑧 Carlson-integral-RD 0 𝑧 𝑦 3 𝑧 Carlson-integral-RF 0 𝑦 𝑧 𝑧 𝑦 𝑧 Carlson-integral-RD 0 𝑦 𝑧 {\displaystyle{\displaystyle yz(R_{D}\left(0,y,z\right)+R_{D}\left(0,z,y\right% ))=3zR_{F}\left(0,y,z\right)+z(y-z)R_{D}\left(0,y,z\right)}}
yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y}) = 3z\CarlsonsymellintRF@{0}{y}{z}+z(y-z)\CarlsonsymellintRD@{0}{y}{z}

Error
y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))) == 3*(x + y*I)*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+(x + y*I)*(y -(x + y*I))*3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[-4.444420962886951, -4.788886968242726]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-6.333545379831845, 3.3543957304704977]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E4 R F ( 0 , z - 1 , z ) = R F ( 0 , 1 - z , 1 ) - i R F ( 0 , z , 1 ) Carlson-integral-RF 0 𝑧 1 𝑧 Carlson-integral-RF 0 1 𝑧 1 imaginary-unit Carlson-integral-RF 0 𝑧 1 {\displaystyle{\displaystyle R_{F}\left(0,z-1,z\right)=R_{F}\left(0,1-z,1% \right)-\mathrm{i}R_{F}\left(0,z,1\right)}}
\CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}-\iunit\CarlsonsymellintRF@{0}{z}{1}

0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)- I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity)
EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
Failure Failure
Failed [7 / 7]
Result: 3.197606220-2.012137137*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 1.024722154-2.538160454*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.447882135735306, 1.6422203572966838]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.9112982419758283, 0.8007121244739206]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.21.E4 R F ( 0 , z - 1 , z ) = R F ( 0 , 1 - z , 1 ) + i R F ( 0 , z , 1 ) Carlson-integral-RF 0 𝑧 1 𝑧 Carlson-integral-RF 0 1 𝑧 1 imaginary-unit Carlson-integral-RF 0 𝑧 1 {\displaystyle{\displaystyle R_{F}\left(0,z-1,z\right)=R_{F}\left(0,1-z,1% \right)+\mathrm{i}R_{F}\left(0,z,1\right)}}
\CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}+\iunit\CarlsonsymellintRF@{0}{z}{1}

0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)+ I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity)
EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
Failure Failure
Failed [7 / 7]
Result: 3.609429842+1.115973839*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 2.710472508+.381644808*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.0036174998504115152, -2.054982714938571]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.9086726238549093, -2.7316000638683375]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.21.E5 2 R G ( 0 , z - 1 , z ) = 2 R G ( 0 , 1 - z , 1 ) + i 2 R G ( 0 , z , 1 ) + ( z - 1 ) R F ( 0 , 1 - z , 1 ) - i z R F ( 0 , z , 1 ) 2 Carlson-integral-RG 0 𝑧 1 𝑧 2 Carlson-integral-RG 0 1 𝑧 1 imaginary-unit 2 Carlson-integral-RG 0 𝑧 1 𝑧 1 Carlson-integral-RF 0 1 𝑧 1 imaginary-unit 𝑧 Carlson-integral-RF 0 𝑧 1 {\displaystyle{\displaystyle 2R_{G}\left(0,z-1,z\right)=2R_{G}\left(0,1-z,1% \right)+\mathrm{i}2R_{G}\left(0,z,1\right)+(z-1)R_{F}\left(0,1-z,1\right)-% \mathrm{i}zR_{F}\left(0,z,1\right)}}
2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}+\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}-\iunit z\CarlsonsymellintRF@{0}{z}{1}

Error
2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+ I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Complex[0.23313173408598564, -1.9381268036446178]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.6842698833888152, -2.1985132995849304]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.21.E5 2 R G ( 0 , z - 1 , z ) = 2 R G ( 0 , 1 - z , 1 ) - i 2 R G ( 0 , z , 1 ) + ( z - 1 ) R F ( 0 , 1 - z , 1 ) + i z R F ( 0 , z , 1 ) 2 Carlson-integral-RG 0 𝑧 1 𝑧 2 Carlson-integral-RG 0 1 𝑧 1 imaginary-unit 2 Carlson-integral-RG 0 𝑧 1 𝑧 1 Carlson-integral-RF 0 1 𝑧 1 imaginary-unit 𝑧 Carlson-integral-RF 0 𝑧 1 {\displaystyle{\displaystyle 2R_{G}\left(0,z-1,z\right)=2R_{G}\left(0,1-z,1% \right)-\mathrm{i}2R_{G}\left(0,z,1\right)+(z-1)R_{F}\left(0,1-z,1\right)+% \mathrm{i}zR_{F}\left(0,z,1\right)}}
2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}-\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}+\iunit z\CarlsonsymellintRF@{0}{z}{1}

Error
2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])- I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Complex[0.44709928924442033, 1.6621495887309192]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.1273665829731985, 1.9939163092606038]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.21.E6 ( r p / z ) R J ( 0 , y , z , p ) = ( r - 1 ) R F ( 0 , y , z ) R D ( p , r z , z ) + R D ( 0 , y , z ) R F ( p , r z , z ) 𝑟 𝑝 𝑧 Carlson-integral-RJ 0 𝑦 𝑧 𝑝 𝑟 1 Carlson-integral-RF 0 𝑦 𝑧 Carlson-integral-RD 𝑝 𝑟 𝑧 𝑧 Carlson-integral-RD 0 𝑦 𝑧 Carlson-integral-RF 𝑝 𝑟 𝑧 𝑧 {\displaystyle{\displaystyle(\sqrt{rp}/z)R_{J}\left(0,y,z,p\right)={(r-1)}R_{F% }\left(0,y,z\right)R_{D}\left(p,rz,z\right)+R_{D}\left(0,y,z\right)R_{F}\left(% p,rz,z\right)}}
(\sqrt{rp}/z)\CarlsonsymellintRJ@{0}{y}{z}{p} = {(r-1)}\CarlsonsymellintRF@{0}{y}{z}\CarlsonsymellintRD@{p}{rz}{z}+\CarlsonsymellintRD@{0}{y}{z}\CarlsonsymellintRF@{p}{rz}{z}
r = ( y - p ) / ( y - z ) , ( y - p ) / ( y - z ) > 0 formulae-sequence 𝑟 𝑦 𝑝 𝑦 𝑧 𝑦 𝑝 𝑦 𝑧 0 {\displaystyle{\displaystyle r=(y-p)/(y-z),(y-p)/(y-z)>0}}
Error
(Sqrt[r*p]/(x + y*I))*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == (r - 1)*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]*3*(EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]-EllipticE[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)])/((x + y*I-r*(x + y*I))*(x + y*I-p)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))*EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]/Sqrt[x + y*I-p]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Complex[-0.019107479205769995, -0.26821779662698253]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[1.626010920193221, 0.604709928225457]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E7 ( x - y ) R D ( y , z , x ) + ( z - y ) R D ( x , y , z ) = 3 R F ( x , y , z ) - 3 y / ( x z ) 𝑥 𝑦 Carlson-integral-RD 𝑦 𝑧 𝑥 𝑧 𝑦 Carlson-integral-RD 𝑥 𝑦 𝑧 3 Carlson-integral-RF 𝑥 𝑦 𝑧 3 𝑦 𝑥 𝑧 {\displaystyle{\displaystyle(x-y)R_{D}\left(y,z,x\right)+(z-y)R_{D}\left(x,y,z% \right)=3R_{F}\left(x,y,z\right)-3\sqrt{y/(xz)}}}
(x-y)\CarlsonsymellintRD@{y}{z}{x}+(z-y)\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}-3\sqrt{y/(xz)}

Error
(x - y)*3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+((x + y*I)- y)*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*Sqrt[y/(x*(x + y*I))]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[2.01816993619941, -7.647648832317454]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[1.9029767059950156, 2.211761239496786]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E8 R D ( y , z , x ) + R D ( z , x , y ) + R D ( x , y , z ) = 3 ( x y z ) - 1 / 2 Carlson-integral-RD 𝑦 𝑧 𝑥 Carlson-integral-RD 𝑧 𝑥 𝑦 Carlson-integral-RD 𝑥 𝑦 𝑧 3 superscript 𝑥 𝑦 𝑧 1 2 {\displaystyle{\displaystyle R_{D}\left(y,z,x\right)+R_{D}\left(z,x,y\right)+R% _{D}\left(x,y,z\right)=3(xyz)^{-1/2}}}
\CarlsonsymellintRD@{y}{z}{x}+\CarlsonsymellintRD@{z}{x}{y}+\CarlsonsymellintRD@{x}{y}{z} = 3(xyz)^{-1/2}

Error
3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*(x*y*(x + y*I))^(- 1/2)
Missing Macro Error Failure -
Failed [18 / 18]
Result: Complex[0.061772053426947915, 0.22732915812456822]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E9 x R D ( y , z , x ) + y R D ( z , x , y ) + z R D ( x , y , z ) = 3 R F ( x , y , z ) 𝑥 Carlson-integral-RD 𝑦 𝑧 𝑥 𝑦 Carlson-integral-RD 𝑧 𝑥 𝑦 𝑧 Carlson-integral-RD 𝑥 𝑦 𝑧 3 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle xR_{D}\left(y,z,x\right)+yR_{D}\left(z,x,y\right)% +zR_{D}\left(x,y,z\right)=3R_{F}\left(x,y,z\right)}}
x\CarlsonsymellintRD@{y}{z}{x}+y\CarlsonsymellintRD@{z}{x}{y}+z\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}

Error
x*3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+(x + y*I)*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Missing Macro Error Aborted -
Failed [18 / 18]
Result: Complex[0.3490343350525606, -4.182689157514275]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E10 2 R G ( x , y , z ) = z R F ( x , y , z ) - 1 3 ( x - z ) ( y - z ) R D ( x , y , z ) + x y / z 2 Carlson-integral-RG 𝑥 𝑦 𝑧 𝑧 Carlson-integral-RF 𝑥 𝑦 𝑧 1 3 𝑥 𝑧 𝑦 𝑧 Carlson-integral-RD 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle 2R_{G}\left(x,y,z\right)=zR_{F}\left(x,y,z\right)% -\tfrac{1}{3}(x-z)(y-z)R_{D}\left(x,y,z\right)+\sqrt{xy/z}}}
2\CarlsonsymellintRG@{x}{y}{z} = z\CarlsonsymellintRF@{x}{y}{z}-\tfrac{1}{3}(x-z)(y-z)\CarlsonsymellintRD@{x}{y}{z}+\sqrt{xy/z}
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
Error
2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == (x + y*I)*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Divide[1,3]*(x -(x + y*I))*(y -(x + y*I))*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))+Sqrt[x*y/(x + y*I)]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Plus[Complex[-2.045465659795318, -0.2973389532409781], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Plus[Complex[-2.0191372830755783, 1.5655011975568338], Times[Complex[1.7320508075688772, 1.732050807568877], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.21.E12 ( p - x ) R J ( x , y , z , p ) + ( q - x ) R J ( x , y , z , q ) = 3 R F ( x , y , z ) - 3 R C ( ξ , η ) 𝑝 𝑥 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 𝑞 𝑥 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑞 3 Carlson-integral-RF 𝑥 𝑦 𝑧 3 Carlson-integral-RC 𝜉 𝜂 {\displaystyle{\displaystyle(p-x)R_{J}\left(x,y,z,p\right)+(q-x)R_{J}\left(x,y% ,z,q\right)=3R_{F}\left(x,y,z\right)-3R_{C}\left(\xi,\eta\right)}}
(p-x)\CarlsonsymellintRJ@{x}{y}{z}{p}+(q-x)\CarlsonsymellintRJ@{x}{y}{z}{q} = 3\CarlsonsymellintRF@{x}{y}{z}-3\CarlsonellintRC@{\xi}{\eta}

Error
(p - x)*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]+(q - x)*3*(x + y*I-x)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[5.153237655786464, -3.718995107844719]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.21#Ex1 ( p - x ) ( q - x ) = ( y - x ) ( z - x ) 𝑝 𝑥 𝑞 𝑥 𝑦 𝑥 𝑧 𝑥 {\displaystyle{\displaystyle(p-x)(q-x)=(y-x)(z-x)}}
(p-x)(q-x) = (y-x)(z-x)

(p - x)*(q - x) = (y - x)*((x + y*I)- x)
(p - x)*(q - x) == (y - x)*((x + y*I)- x)
Skipped - no semantic math Skipped - no semantic math - -
19.21#Ex2 ξ = y z / x 𝜉 𝑦 𝑧 𝑥 {\displaystyle{\displaystyle\xi=yz/x}}
\xi = yz/x

xi = y*z/x
\[Xi] == y*z/x
Skipped - no semantic math Skipped - no semantic math - -
19.21#Ex3 η = p q / x 𝜂 𝑝 𝑞 𝑥 {\displaystyle{\displaystyle\eta=pq/x}}
\eta = pq/x

eta = p*q/x
\[Eta] == p*q/x
Skipped - no semantic math Skipped - no semantic math - -
19.21.E14 η - ξ = p + q - y - z 𝜂 𝜉 𝑝 𝑞 𝑦 𝑧 {\displaystyle{\displaystyle\eta-\xi=p+q-y-z}}
\eta-\xi = p+q-y-z

eta - xi = p + q - y -(x + y*I)
\[Eta]- \[Xi] == p + q - y -(x + y*I)
Skipped - no semantic math Skipped - no semantic math - -
19.21.E15 p R J ( 0 , y , z , p ) + q R J ( 0 , y , z , q ) = 3 R F ( 0 , y , z ) 𝑝 Carlson-integral-RJ 0 𝑦 𝑧 𝑝 𝑞 Carlson-integral-RJ 0 𝑦 𝑧 𝑞 3 Carlson-integral-RF 0 𝑦 𝑧 {\displaystyle{\displaystyle pR_{J}\left(0,y,z,p\right)+qR_{J}\left(0,y,z,q% \right)=3R_{F}\left(0,y,z\right)}}
p\CarlsonsymellintRJ@{0}{y}{z}{p}+q\CarlsonsymellintRJ@{0}{y}{z}{q} = 3\CarlsonsymellintRF@{0}{y}{z}
p q = y z 𝑝 𝑞 𝑦 𝑧 {\displaystyle{\displaystyle pq=yz}}
Error
p*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0]+ q*3*(x + y*I-0)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == 3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-0.5878632565330948, -3.2355968294614907]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-2.320767562800481, 3.5603464097743847]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data