DLMF:18.9.E20 (Q5616): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
 
(3 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / rank
 
Normal rank
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / qualifier
 
test:

d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}

\deriv{\NVar{f}}{\NVar{x}}
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / qualifier
 
xml-id: C1.S4.E4.m2aedec
Property / Symbols used
 
Property / Symbols used: Q11475 / rank
 
Normal rank
Property / Symbols used: Q11475 / qualifier
 
test:

C n ( λ ) ( x ) ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 𝑥 {\displaystyle{\displaystyle C^{(\NVar{\lambda})}_{\NVar{n}}\left(\NVar{x}% \right)}}

\ultrasphpoly{\NVar{\lambda}}{\NVar{n}}@{\NVar{x}}
Property / Symbols used: Q11475 / qualifier
 
xml-id: C18.S3.T1.t1.r3.m2addec
Property / Symbols used
 
Property / Symbols used: Q11726 / rank
 
Normal rank
Property / Symbols used: Q11726 / qualifier
 
test:

n 𝑛 {\displaystyle{\displaystyle n}}

n
Property / Symbols used: Q11726 / qualifier
 
xml-id: C18.S1.XMD6.m1tdec
Property / Symbols used
 
Property / Symbols used: Q11727 / rank
 
Normal rank
Property / Symbols used: Q11727 / qualifier
 
test:

x 𝑥 {\displaystyle{\displaystyle x}}

x
Property / Symbols used: Q11727 / qualifier
 
xml-id: C18.S2.XMD3.m1sdec

Latest revision as of 14:24, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.9.E20
No description defined

    Statements

    d d x ( ( 1 - x 2 ) λ - 1 2 C n ( λ ) ( x ) ) = - ( n + 1 ) ( n + 2 λ - 1 ) 2 ( λ - 1 ) ( 1 - x 2 ) λ - 3 2 C n + 1 ( λ - 1 ) ( x ) . derivative 𝑥 superscript 1 superscript 𝑥 2 𝜆 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 𝑥 𝑛 1 𝑛 2 𝜆 1 2 𝜆 1 superscript 1 superscript 𝑥 2 𝜆 3 2 ultraspherical-Gegenbauer-polynomial 𝜆 1 𝑛 1 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^{2})^{% \lambda-\frac{1}{2}}C^{(\lambda)}_{n}\left(x\right)\right)=-\frac{(n+1)(n+2% \lambda-1)}{2(\lambda-1)}{(1-x^{2})^{\lambda-\frac{3}{2}}}C^{(\lambda-1)}_{n+1% }\left(x\right).}}
    0 references
    0 references
    d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}
    C1.S4.E4.m2aedec
    0 references
    C n ( λ ) ( x ) ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 𝑥 {\displaystyle{\displaystyle C^{(\NVar{\lambda})}_{\NVar{n}}\left(\NVar{x}% \right)}}
    C18.S3.T1.t1.r3.m2addec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1tdec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1sdec
    0 references