DLMF:18.9.E15 (Q5611): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(2 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / rank
 
Normal rank
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / qualifier
 
test:

d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}

\deriv{\NVar{f}}{\NVar{x}}
Property / Symbols used: derivative of $$f$$ with respect to $$x$$ / qualifier
 
xml-id: C1.S4.E4.m2adec
Property / Symbols used
 
Property / Symbols used: Q11726 / rank
 
Normal rank
Property / Symbols used: Q11726 / qualifier
 
test:

n 𝑛 {\displaystyle{\displaystyle n}}

n
Property / Symbols used: Q11726 / qualifier
 
xml-id: C18.S1.XMD6.m1odec
Property / Symbols used
 
Property / Symbols used: Q11727 / rank
 
Normal rank
Property / Symbols used: Q11727 / qualifier
 
test:

x 𝑥 {\displaystyle{\displaystyle x}}

x
Property / Symbols used: Q11727 / qualifier
 
xml-id: C18.S2.XMD3.m1ndec

Latest revision as of 14:24, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.9.E15
No description defined

    Statements

    d d x P n ( α , β ) ( x ) = 1 2 ( n + α + β + 1 ) P n - 1 ( α + 1 , β + 1 ) ( x ) , derivative 𝑥 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 1 2 𝑛 𝛼 𝛽 1 Jacobi-polynomial-P 𝛼 1 𝛽 1 𝑛 1 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}P^{(\alpha,\beta)}_{% n}\left(x\right)=\tfrac{1}{2}(n+\alpha+\beta+1)P^{(\alpha+1,\beta+1)}_{n-1}% \left(x\right),}}
    0 references
    0 references
    P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}
    C18.S3.T1.t1.r2.m2addec
    0 references
    d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}
    C1.S4.E4.m2adec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1odec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1ndec
    0 references