DLMF:18.5.E7 (Q5515): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(4 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Q10759 / rank
 
Normal rank
Property / Symbols used: Q10759 / qualifier
 
test:

( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}

\Pochhammersym{\NVar{a}}{\NVar{n}}
Property / Symbols used: Q10759 / qualifier
 
xml-id: C5.S2.SS3.m1aadec
Property / Symbols used
 
Property / Symbols used: Q10755 / rank
 
Normal rank
Property / Symbols used: Q10755 / qualifier
 
test:

! {\displaystyle{\displaystyle!}}

!
Property / Symbols used: Q10755 / qualifier
 
xml-id: introduction.Sx4.p1.t1.r15.m5abdec
Property / Symbols used
 
Property / Symbols used: Q11744 / rank
 
Normal rank
Property / Symbols used: Q11744 / qualifier
 
test:

{\displaystyle{\displaystyle\ell}}

\ell
Property / Symbols used: Q11744 / qualifier
 
xml-id: C18.S1.XMD4.m1dec
Property / Symbols used
 
Property / Symbols used: Q11726 / rank
 
Normal rank
Property / Symbols used: Q11726 / qualifier
 
test:

n 𝑛 {\displaystyle{\displaystyle n}}

n
Property / Symbols used: Q11726 / qualifier
 
xml-id: C18.S1.XMD6.m1gdec
Property / Symbols used
 
Property / Symbols used: Q11727 / rank
 
Normal rank
Property / Symbols used: Q11727 / qualifier
 
test:

x 𝑥 {\displaystyle{\displaystyle x}}

x
Property / Symbols used: Q11727 / qualifier
 
xml-id: C18.S2.XMD3.m1gdec

Latest revision as of 14:16, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.5.E7
No description defined

    Statements

    P n ( α , β ) ( x ) = = 0 n ( n + α + β + 1 ) ( α + + 1 ) n - ! ( n - ) ! ( x - 1 2 ) = ( α + 1 ) n n ! F 1 2 ( - n , n + α + β + 1 α + 1 ; 1 - x 2 ) , Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 superscript subscript 0 𝑛 Pochhammer 𝑛 𝛼 𝛽 1 Pochhammer 𝛼 1 𝑛 𝑛 superscript 𝑥 1 2 Pochhammer 𝛼 1 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 𝛼 𝛽 1 𝛼 1 1 𝑥 2 {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=\sum_{\ell=0% }^{n}\frac{{\left(n+\alpha+\beta+1\right)_{\ell}}{\left(\alpha+\ell+1\right)_{% n-\ell}}}{\ell!\;(n-\ell)!}\left(\frac{x-1}{2}\right)^{\ell}=\frac{{\left(% \alpha+1\right)_{n}}}{n!}{{}_{2}F_{1}}\left({-n,n+\alpha+\beta+1\atop\alpha+1}% ;\frac{1-x}{2}\right),}}
    0 references
    0 references
    F 1 2 ( a , b ; c ; z ) Gauss-hypergeometric-F-as-2F1 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle{{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};% \NVar{z}\right)}}
    C16.S2.m5adec
    0 references
    P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}
    C18.S3.T1.t1.r2.m2aadec
    0 references
    ( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}
    C5.S2.SS3.m1aadec
    0 references
    ! {\displaystyle{\displaystyle!}}
    introduction.Sx4.p1.t1.r15.m5abdec
    0 references
    {\displaystyle{\displaystyle\ell}}
    C18.S1.XMD4.m1dec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1gdec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1gdec
    0 references