DLMF:17.6.E1 (Q5368): Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica | imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica | ||
| (One intermediate revision by the same user not shown) | |||
| Property / Symbols used | |||
| Property / Symbols used: basic hypergeometric (or $$q$$ -hypergeometric) function / rank | |||
| Normal rank | |||
| Property / Symbols used: basic hypergeometric (or $$q$$ -hypergeometric) function / qualifier | |||
| test:  Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qgenhyperphi{\NVar{r+1}}{\NVar{s}}@{\NVar{a_{0},\dots,a_{r}}}{\NVar{b_{1},\dots,b_{s}}}{\NVar{q}}{\NVar{z}}}\qgenhyperphi{\NVar{r+1}}{\NVar{s}}@{\NVar{a_{0},\dots,a_{r}}}{\NVar{b_{1},\dots,b_{s}}}{\NVar{q}}{\NVar{z}} | |||
| Property / Symbols used: basic hypergeometric (or $$q$$ -hypergeometric) function / qualifier | |||
| xml-id: C17.S4.E1.m2adec | |||
| Property / Symbols used | |||
| Property / Symbols used: Q11713 / rank | |||
| Normal rank | |||
| Property / Symbols used: Q11713 / qualifier | |||
| test:  Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qmultiPochhammersym{\NVar{a_{1},a_{2},\dots,a_{r}}}{\NVar{q}}{\NVar{n}}}\qmultiPochhammersym{\NVar{a_{1},a_{2},\dots,a_{r}}}{\NVar{q}}{\NVar{n}} | |||
| Property / Symbols used: Q11713 / qualifier | |||
| xml-id: C17.S2.SS1.p1.m6adec | |||
Latest revision as of 13:57, 2 January 2020
No description defined
| Language | Label | Description | Also known as | 
|---|---|---|---|
| English | DLMF:17.6.E1 | No description defined | 
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qgenhyperphi{2}{1}@@{a,b}{c}{q}{\ifrac{c}{(ab)}}=\frac{\qmultiPochhammersym{c/a,c/b}{q}{\infty}}{\qmultiPochhammersym{c,c/(ab)}{q}{\infty}}.}
0 references
0 references