Results of Elementary Functions II: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 1: Line 1:
 
<div style="width: 100%; height: 75vh; overflow: auto;">
{| class="wikitable sortable" style="margin: 0;"
|-
! scope="col" style="position: sticky; top: 0;" | DLMF
! scope="col" style="position: sticky; top: 0;" | Formula
! scope="col" style="position: sticky; top: 0;" | Constraints
! scope="col" style="position: sticky; top: 0;" | Maple
! scope="col" style="position: sticky; top: 0;" | Mathematica
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
| [https://dlmf.nist.gov/4.24.E2 4.24.E2] || [[Item:Q1796|<math>\acos@@{z} = (2(1-z))^{1/2}\*\left(1+\sum_{n=1}^{\infty}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}(2n+1)n!}(1-z)^{n}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = (2(1-z))^{1/2}\*\left(1+\sum_{n=1}^{\infty}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}(2n+1)n!}(1-z)^{n}\right)</syntaxhighlight> || <math>|1-z| \leq 2</math> || <syntaxhighlight lang=mathematica>arccos(z) = (2*(1 - z))^(1/2)*(1 + sum((1 * 3 * 5*(2*n - 1))/((2)^(2*n)*(2*n + 1)*factorial(n))*(1 - z)^(n), n = 1..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == (2*(1 - z))^(1/2)*(1 + Sum[Divide[1 * 3 * 5*(2*n - 1),(2)^(2*n)*(2*n + 1)*(n)!]*(1 - z)^(n), {n, 1, Infinity}, GenerateConditions->None])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3065228369+.5552108774*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.012742443+4.300365362*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3498215011-1.819822265*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.876013992-3.037981862*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3065228364484756, 0.5552108781095243]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.0127424460165777, 4.300365361528893]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.24.E6 4.24.E6] || [[Item:Q1800|<math>x^{2}-y^{2} = -\tfrac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x^{2}-y^{2} = -\tfrac{1}{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x)^(2)- (y)^(2) = -(1)/(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x)^(2)- (y)^(2) == -Divide[1,2]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.24.E7 4.24.E7] || [[Item:Q1801|<math>\deriv{}{z}\asin@@{z} = (1-z^{2})^{-1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\asin@@{z} = (1-z^{2})^{-1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arcsin(z), z) = (1 - (z)^(2))^(- 1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcSin[z], z] == (1 - (z)^(2))^(- 1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.24.E8 4.24.E8] || [[Item:Q1802|<math>\deriv{}{z}\acos@@{z} = -(1-z^{2})^{-1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acos@@{z} = -(1-z^{2})^{-1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccos(z), z) = -(1 - (z)^(2))^(- 1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCos[z], z] == -(1 - (z)^(2))^(- 1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.24.E9 4.24.E9] || [[Item:Q1803|<math>\deriv{}{z}\atan@@{z} = \frac{1}{1+z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\atan@@{z} = \frac{1}{1+z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arctan(z), z) = (1)/(1 + (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcTan[z], z] == Divide[1,1 + (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.24.E10 4.24.E10] || [[Item:Q1804|<math>\deriv{}{z}\acsc@@{z} = -\frac{1}{z(z^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acsc@@{z} = -\frac{1}{z(z^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccsc(z), z) = -(1)/(z*((z)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCsc[z], z] == -Divide[1,z*((z)^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.074569932-1.074569932*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6696152420e-9+2.000000000*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.24.E10 4.24.E10] || [[Item:Q1804|<math>\deriv{}{z}\acsc@@{z} = +\frac{1}{z(z^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acsc@@{z} = +\frac{1}{z(z^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccsc(z), z) = +(1)/(z*((z)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCsc[z], z] == +Divide[1,z*((z)^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6696152420e-9+2.000000000*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.074569932-1.074569932*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.192569588
Test Values: {z = 1.5, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.618802153*I
Test Values: {z = .5, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 4.618802153517007]
Test Values: {Rule[z, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.24.E11 4.24.E11] || [[Item:Q1805|<math>\deriv{}{z}\asec@@{z} = +\frac{1}{z(z^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\asec@@{z} = +\frac{1}{z(z^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arcsec(z), z) = +(1)/(z*((z)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcSec[z], z] == +Divide[1,z*((z)^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.074569932+1.074569932*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6696152420e-9-2.000000000*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.24.E11 4.24.E11] || [[Item:Q1805|<math>\deriv{}{z}\asec@@{z} = -\frac{1}{z(z^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\asec@@{z} = -\frac{1}{z(z^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arcsec(z), z) = -(1)/(z*((z)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcSec[z], z] == -Divide[1,z*((z)^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6696152420e-9-2.000000000*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.074569932+1.074569932*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.192569588
Test Values: {z = 1.5, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -4.618802153*I
Test Values: {z = .5, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -4.618802153517007]
Test Values: {Rule[z, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.24.E12 4.24.E12] || [[Item:Q1806|<math>\deriv{}{z}\acot@@{z} = -\frac{1}{1+z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acot@@{z} = -\frac{1}{1+z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccot(z), z) = -(1)/(1 + (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCot[z], z] == -Divide[1,1 + (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.24.E13 4.24.E13] || [[Item:Q1807|<math>\Asin@@{u}+\Asin@@{v} = \Asin@{u(1-v^{2})^{1/2}+ v(1-u^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{u}+\Asin@@{v} = \Asin@{u(1-v^{2})^{1/2}+ v(1-u^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[u]+ ArcSin[v] == ArcSin[u*(1 - (v)^(2))^(1/2)+ v*(1 - (u)^(2))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [34 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.440892098500626*^-16, 2.633915793849633]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948966, -0.6078894033135972]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E13 4.24.E13] || [[Item:Q1807|<math>\Asin@@{u}-\Asin@@{v} = \Asin@{u(1-v^{2})^{1/2}- v(1-u^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{u}-\Asin@@{v} = \Asin@{u(1-v^{2})^{1/2}- v(1-u^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[u]- ArcSin[v] == ArcSin[u*(1 - (v)^(2))^(1/2)- v*(1 - (u)^(2))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [34 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.440892098500626*^-16, 2.633915793849633]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948966, -0.6078894033135972]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E14 4.24.E14] || [[Item:Q1808|<math>\Acos@@{u}+\Acos@@{v} = \Acos@{uv-((1-u^{2})(1-v^{2}))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{u}+\Acos@@{v} = \Acos@{uv-((1-u^{2})(1-v^{2}))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[u]+ ArcCos[v] == ArcCos[u*v -((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [63 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948963, -3.2418051971632305]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948966, -3.9508736907744497]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E14 4.24.E14] || [[Item:Q1808|<math>\Acos@@{u}-\Acos@@{v} = \Acos@{uv+((1-u^{2})(1-v^{2}))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{u}-\Acos@@{v} = \Acos@{uv+((1-u^{2})(1-v^{2}))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[u]- ArcCos[v] == ArcCos[u*v +((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [63 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.3202651922123767, 0.3459279941338042]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8213274613774166, -2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E15 4.24.E15] || [[Item:Q1809|<math>\Atan@@{u}+\Atan@@{v} = \Atan@{\frac{u+ v}{1- uv}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{u}+\Atan@@{v} = \Atan@{\frac{u+ v}{1- uv}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[u]+ ArcTan[v] == ArcTan[Divide[u + v,1 - u*v]]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.24.E15 4.24.E15] || [[Item:Q1809|<math>\Atan@@{u}-\Atan@@{v} = \Atan@{\frac{u- v}{1+ uv}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{u}-\Atan@@{v} = \Atan@{\frac{u- v}{1+ uv}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[u]- ArcTan[v] == ArcTan[Divide[u - v,1 + u*v]]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.24.E16 4.24.E16] || [[Item:Q1810|<math>\Asin@@{u}+\Acos@@{v} = \Asin@{uv+((1-u^{2})(1-v^{2}))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{u}+\Acos@@{v} = \Asin@{uv+((1-u^{2})(1-v^{2}))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[u]+ ArcCos[v] == ArcSin[u*v +((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [63 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.3202651922123767, -0.3459279941338042]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.8213274613774166, 2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E16 4.24.E16] || [[Item:Q1810|<math>\Asin@@{u}-\Acos@@{v} = \Asin@{uv-((1-u^{2})(1-v^{2}))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{u}-\Acos@@{v} = \Asin@{uv-((1-u^{2})(1-v^{2}))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[u]- ArcCos[v] == ArcSin[u*v -((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [63 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.5707963267948963, 3.2418051971632305]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.5707963267948966, 3.9508736907744497]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E16 4.24.E16] || [[Item:Q1810|<math>\Asin@{uv+((1-u^{2})(1-v^{2}))^{1/2}} = \Acos@{v(1-u^{2})^{1/2}- u(1-v^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@{uv+((1-u^{2})(1-v^{2}))^{1/2}} = \Acos@{v(1-u^{2})^{1/2}- u(1-v^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[u*v +((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)] == ArcCos[v*(1 - (u)^(2))^(1/2)- u*(1 - (v)^(2))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [72 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.3202651922123763, 0.3459279941338042]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8213274613774164, -2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E16 4.24.E16] || [[Item:Q1810|<math>\Asin@{uv-((1-u^{2})(1-v^{2}))^{1/2}} = \Acos@{v(1-u^{2})^{1/2}+ u(1-v^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@{uv-((1-u^{2})(1-v^{2}))^{1/2}} = \Acos@{v(1-u^{2})^{1/2}+ u(1-v^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[u*v -((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)] == ArcCos[v*(1 - (u)^(2))^(1/2)+ u*(1 - (v)^(2))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [91 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.3202651922123767, 2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8213274613774161, -0.3459279941338048]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.24.E17 4.24.E17] || [[Item:Q1811|<math>\Atan@@{u}+\Acot@@{v} = \Atan@{\frac{uv+ 1}{v- u}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{u}+\Acot@@{v} = \Atan@{\frac{uv+ 1}{v- u}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[u]+ ArcCot[v] == ArcTan[Divide[u*v + 1,v - u]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, 0.5]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.24.E17 4.24.E17] || [[Item:Q1811|<math>\Atan@@{u}-\Acot@@{v} = \Atan@{\frac{uv- 1}{v+ u}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{u}-\Acot@@{v} = \Atan@{\frac{uv- 1}{v+ u}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[u]- ArcCot[v] == ArcTan[Divide[u*v - 1,v + u]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, -0.5]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.24.E17 4.24.E17] || [[Item:Q1811|<math>\Atan@{\frac{uv+ 1}{v- u}} = \Acot@{\frac{v- u}{uv+ 1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@{\frac{uv+ 1}{v- u}} = \Acot@{\frac{v- u}{uv+ 1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[Divide[u*v + 1,v - u]] == ArcCot[Divide[v - u,u*v + 1]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, 0.5]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.24.E17 4.24.E17] || [[Item:Q1811|<math>\Atan@{\frac{uv- 1}{v+ u}} = \Acot@{\frac{v+ u}{uv- 1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@{\frac{uv- 1}{v+ u}} = \Acot@{\frac{v+ u}{uv- 1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[Divide[u*v - 1,v + u]] == ArcCot[Divide[v + u,u*v - 1]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, -0.5]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.26.E1 4.26.E1] || [[Item:Q1817|<math>\int\sin@@{x}\diff{x} = -\cos@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sin@@{x}\diff{x} = -\cos@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin(x), x) = - cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[x], x, GenerateConditions->None] == - Cos[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E2 4.26.E2] || [[Item:Q1818|<math>\int\cos@@{x}\diff{x} = \sin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cos@@{x}\diff{x} = \sin@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos(x), x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[x], x, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E3 4.26.E3] || [[Item:Q1819|<math>\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi < x, x < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(tan(x), x) = - ln(cos(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Tan[x], x, GenerateConditions->None] == - Log[Cos[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.26.E4 4.26.E4] || [[Item:Q1820|<math>\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(csc(x), x) = ln(tan((1)/(2)*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Csc[x], x, GenerateConditions->None] == Log[Tan[Divide[1,2]*x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E5 4.26.E5] || [[Item:Q1821|<math>\int\sec@@{x}\diff{x} = \aGudermannian@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sec@@{x}\diff{x} = \aGudermannian@{x}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(sec(x), x) = arctanh(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sec[x], x, GenerateConditions->None] == InverseGudermannian[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.26.E6 4.26.E6] || [[Item:Q1822|<math>\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(cot(x), x) = ln(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cot[x], x, GenerateConditions->None] == Log[Sin[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E7 4.26.E7] || [[Item:Q1823|<math>\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*sin(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*sin(b*x)- b*cos(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Sin[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Sin[b*x]- b*Cos[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108]
|-
| [https://dlmf.nist.gov/4.26.E8 4.26.E8] || [[Item:Q1824|<math>\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*cos(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*cos(b*x)+ b*sin(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Cos[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Cos[b*x]+ b*Sin[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108]
|-
| [https://dlmf.nist.gov/4.26.E9 4.26.E9] || [[Item:Q1825|<math>\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(sin(m*t)*sin(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[m*t]*Sin[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/4.26.E10 4.26.E10] || [[Item:Q1826|<math>\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(cos(m*t)*cos(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[m*t]*Cos[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] || [[Item:Q1827|<math>\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((sin(n*t))^(2), t = 0..Pi) = int((cos(n*t))^(2), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] || [[Item:Q1827|<math>\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((cos(n*t))^(2), t = 0..Pi) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Divide[1,2]*Pi</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] || [[Item:Q1829|<math>\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin((t)^(2)), t = 0..infinity) = int(cos((t)^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] || [[Item:Q1829|<math>\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos((t)^(2)), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.26.E14 4.26.E14] || [[Item:Q1830|<math>\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arcsin(x), x) = x*arcsin(x)+(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSin[x], x, GenerateConditions->None] == x*ArcSin[x]+(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.26.E15 4.26.E15] || [[Item:Q1831|<math>\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arccos(x), x) = x*arccos(x)-(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCos[x], x, GenerateConditions->None] == x*ArcCos[x]-(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.26.E16 4.26.E16] || [[Item:Q1832|<math>\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arctan(x), x) = x*arctan(x)-(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcTan[x], x, GenerateConditions->None] == x*ArcTan[x]-Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E17 4.26.E17] || [[Item:Q1833|<math>\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccsc(x), x) = x*arccsc(x)+ ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCsc[x], x, GenerateConditions->None] == x*ArcCsc[x]+ Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.1102230246251565*^-16, -1.5707963267948966]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.440892098500626*^-16, -1.5707963267948966]
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.26.E18 4.26.E18] || [[Item:Q1834|<math>\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arcsec(x), x) = x*arcsec(x)- ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSec[x], x, GenerateConditions->None] == x*ArcSec[x]- Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, 1.5707963267948966]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.440892098500626*^-16, 1.5707963267948966]
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.26.E19 4.26.E19] || [[Item:Q1835|<math>\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccot(x), x) = x*arccot(x)+(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCot[x], x, GenerateConditions->None] == x*ArcCot[x]+Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.26.E20 4.26.E20] || [[Item:Q1836|<math>\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arcsin(x), x) = (((x)^(2))/(2)-(1)/(4))*arcsin(x)+(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcSin[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcSin[x]+Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.26.E21 4.26.E21] || [[Item:Q1837|<math>\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arccos(x), x) = (((x)^(2))/(2)-(1)/(4))*arccos(x)-(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcCos[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcCos[x]-Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3926990817
Test Values: {x = .5}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.3926990816987242
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.28.E1 4.28.E1] || [[Item:Q1838|<math>\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(z) = (exp(z)- exp(- z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[z] == Divide[Exp[z]- Exp[- z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E2 4.28.E2] || [[Item:Q1839|<math>\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z) = (exp(z)+ exp(- z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z] == Divide[Exp[z]+ Exp[- z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E3 4.28.E3] || [[Item:Q1840|<math>\cosh@@{z}+\sinh@@{z} = e^{+ z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z}+\sinh@@{z} = e^{+ z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z)+ sinh(z) = exp(+ z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z]+ Sinh[z] == Exp[+ z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E3 4.28.E3] || [[Item:Q1840|<math>\cosh@@{z}-\sinh@@{z} = e^{- z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z}-\sinh@@{z} = e^{- z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z)- sinh(z) = exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z]- Sinh[z] == Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E4 4.28.E4] || [[Item:Q1841|<math>\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(z) = (sinh(z))/(cosh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[z] == Divide[Sinh[z],Cosh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E5 4.28.E5] || [[Item:Q1842|<math>\csch@@{z} = \frac{1}{\sinh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csch@@{z} = \frac{1}{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csch(z) = (1)/(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csch[z] == Divide[1,Sinh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E6 4.28.E6] || [[Item:Q1843|<math>\sech@@{z} = \frac{1}{\cosh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sech@@{z} = \frac{1}{\cosh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sech(z) = (1)/(cosh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sech[z] == Divide[1,Cosh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E7 4.28.E7] || [[Item:Q1844|<math>\coth@@{z} = \frac{1}{\tanh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{z} = \frac{1}{\tanh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(z) = (1)/(tanh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[z] == Divide[1,Tanh[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E8 4.28.E8] || [[Item:Q1845|<math>\sin@{iz} = i\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{iz} = i\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(I*z) = I*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[I*z] == I*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E9 4.28.E9] || [[Item:Q1846|<math>\cos@{iz} = \cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{iz} = \cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(I*z) = cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[I*z] == Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E10 4.28.E10] || [[Item:Q1847|<math>\tan@{iz} = i\tanh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{iz} = i\tanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(I*z) = I*tanh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[I*z] == I*Tanh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E11 4.28.E11] || [[Item:Q1848|<math>\csc@{iz} = -i\csch@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@{iz} = -i\csch@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(I*z) = - I*csch(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[I*z] == - I*Csch[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E12 4.28.E12] || [[Item:Q1849|<math>\sec@{iz} = \sech@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@{iz} = \sech@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(I*z) = sech(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[I*z] == Sech[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.28.E13 4.28.E13] || [[Item:Q1850|<math>\cot@{iz} = -i\coth@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{iz} = -i\coth@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(I*z) = - I*coth(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[I*z] == - I*Coth[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.31.E1 4.31.E1] || [[Item:Q1851|<math>\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sinh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.31.E2 4.31.E2] || [[Item:Q1852|<math>\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tanh(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.31.E3 4.31.E3] || [[Item:Q1853|<math>\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.32.E1 4.32.E1] || [[Item:Q1854|<math>\cosh@@{x} \leq \left(\frac{\sinh@@{x}}{x}\right)^{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{x} \leq \left(\frac{\sinh@@{x}}{x}\right)^{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(x) <= ((sinh(x))/(x))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[x] <= (Divide[Sinh[x],x])^(3)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.32.E2 4.32.E2] || [[Item:Q1855|<math>\sin@@{x}\cos@@{x} < \tanh@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{x}\cos@@{x} < \tanh@@{x}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>sin(x)*cos(x) < tanh(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x]*Cos[x] < Tanh[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.32.E2 4.32.E2] || [[Item:Q1855|<math>\tanh@@{x} < x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{x} < x</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>tanh(x) < x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[x] < x</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.32.E3 4.32.E3] || [[Item:Q1856|<math>|\cosh@@{x}-\cosh@@{y}| \geq |x-y|\sqrt{\sinh@@{x}\sinh@@{y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cosh@@{x}-\cosh@@{y}| \geq |x-y|\sqrt{\sinh@@{x}\sinh@@{y}}</syntaxhighlight> || <math>x > 0, y > 0</math> || <syntaxhighlight lang=mathematica>abs(cosh(x)- cosh(y)) >= abs(x - y)*sqrt(sinh(x)*sinh(y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cosh[x]- Cosh[y]] >= Abs[x - y]*Sqrt[Sinh[x]*Sinh[y]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/4.32.E4 4.32.E4] || [[Item:Q1857|<math>\atan@@{x} \leq \tfrac{1}{2}\pi\tanh@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@@{x} \leq \tfrac{1}{2}\pi\tanh@@{x}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>arctan(x) <= (1)/(2)*Pi*tanh(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[x] <= Divide[1,2]*Pi*Tanh[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.34.E1 4.34.E1] || [[Item:Q1861|<math>\deriv{}{z}\sinh@@{z} = \cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\sinh@@{z} = \cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sinh(z), z) = cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sinh[z], z] == Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.34.E2 4.34.E2] || [[Item:Q1862|<math>\deriv{}{z}\cosh@@{z} = \sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\cosh@@{z} = \sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(cosh(z), z) = sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Cosh[z], z] == Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.34.E3 4.34.E3] || [[Item:Q1863|<math>\deriv{}{z}\tanh@@{z} = \sech^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\tanh@@{z} = \sech^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(tanh(z), z) = (sech(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Tanh[z], z] == (Sech[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.34.E4 4.34.E4] || [[Item:Q1864|<math>\deriv{}{z}\csch@@{z} = -\csch@@{z}\coth@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\csch@@{z} = -\csch@@{z}\coth@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(csch(z), z) = - csch(z)*coth(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Csch[z], z] == - Csch[z]*Coth[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.34.E5 4.34.E5] || [[Item:Q1865|<math>\deriv{}{z}\sech@@{z} = -\sech@@{z}\tanh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\sech@@{z} = -\sech@@{z}\tanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sech(z), z) = - sech(z)*tanh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sech[z], z] == - Sech[z]*Tanh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.34.E6 4.34.E6] || [[Item:Q1866|<math>\deriv{}{z}\coth@@{z} = -\csch^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\coth@@{z} = -\csch^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(coth(z), z) = - (csch(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Coth[z], z] == - (Csch[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.34.E7 4.34.E7] || [[Item:Q1867|<math>\deriv[2]{w}{z}-a^{2}w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}-a^{2}w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])- (a)^(2)* w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]- (a)^(2)* w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.948557158514987, -1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.948557158514987, -1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.34.E8 4.34.E8] || [[Item:Q1868|<math>\left(\deriv{w}{z}\right)^{2}-a^{2}w^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{w}{z}\right)^{2}-a^{2}w^{2} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(w, z))^(2)- (a)^(2)* (w)^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[w, z])^(2)- (a)^(2)* (w)^(2) == 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.34.E9 4.34.E9] || [[Item:Q1869|<math>\left(\deriv{w}{z}\right)^{2}-a^{2}w^{2} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{w}{z}\right)^{2}-a^{2}w^{2} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(w, z))^(2)- (a)^(2)* (w)^(2) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[w, z])^(2)- (a)^(2)* (w)^(2) == - 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.12500000000000022, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.12500000000000022, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.34.E10 4.34.E10] || [[Item:Q1870|<math>\deriv{w}{z}+a^{2}w^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{w}{z}+a^{2}w^{2} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, z)+ (a)^(2)* (w)^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, z]+ (a)^(2)* (w)^(2) == 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.34.E11 4.34.E11] || [[Item:Q1871|<math>w = A\cosh@{az}+B\sinh@{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = A\cosh@{az}+B\sinh@{az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = A*cosh(a*z)+ B*sinh(a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == A*Cosh[a*z]+ B*Sinh[a*z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6001928989+.561234643*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6457530113+1.981963256*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9837329493+.425340516e-1*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2074648399-3.005064943*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6001928983405861, 0.5612346426489729]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.645753012062901, 1.9819632558589868]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.34.E12 4.34.E12] || [[Item:Q1872|<math>w = (1/a)\sinh@{az+c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = (1/a)\sinh@{az+c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = (1/a)*sinh(a*z + c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == (1/a)*Sinh[a*z + c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.126061208-3.246674013*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7188715257-.3314459800*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .265391293e-1+3.580357057*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7673365303+.9636329126*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.126061206522873, -3.246674011194613]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7188715253469982, -0.33144598009263954]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.34.E13 4.34.E13] || [[Item:Q1873|<math>w = (1/a)\cosh@{az+c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = (1/a)\cosh@{az+c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = (1/a)*cosh(a*z + c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == (1/a)*Cosh[a*z + c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 4.887803259+4.219013756*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.097709449+1.028092043*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.724372908-2.512669644*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.363701096+.4080617947*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.887803257491119, 4.219013753952423]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.0977094487385304, 1.0280920432224616]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.34.E14 4.34.E14] || [[Item:Q1874|<math>w = (1/a)\coth@{az+c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = (1/a)\coth@{az+c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = (1/a)*coth(a*z + c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == (1/a)*Coth[a*z + c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1990274306+.5049301211*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4235738270+.6074604561*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2119596261+.4924838498*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5938323036-.1576784256*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.19902743024251868, 0.504930121080845]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.423573826800421, 0.6074604562830159]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.35.E1 4.35.E1] || [[Item:Q1875|<math>\sinh@{u+ v} = \sinh@@{u}\cosh@@{v}+\cosh@@{u}\sinh@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{u+ v} = \sinh@@{u}\cosh@@{v}+\cosh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u + v) = sinh(u)*cosh(v)+ cosh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u + v] == Sinh[u]*Cosh[v]+ Cosh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E1 4.35.E1] || [[Item:Q1875|<math>\sinh@{u- v} = \sinh@@{u}\cosh@@{v}-\cosh@@{u}\sinh@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{u- v} = \sinh@@{u}\cosh@@{v}-\cosh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u - v) = sinh(u)*cosh(v)- cosh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u - v] == Sinh[u]*Cosh[v]- Cosh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E2 4.35.E2] || [[Item:Q1876|<math>\cosh@{u+ v} = \cosh@@{u}\cosh@@{v}+\sinh@@{u}\sinh@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{u+ v} = \cosh@@{u}\cosh@@{v}+\sinh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u + v) = cosh(u)*cosh(v)+ sinh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u + v] == Cosh[u]*Cosh[v]+ Sinh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E2 4.35.E2] || [[Item:Q1876|<math>\cosh@{u- v} = \cosh@@{u}\cosh@@{v}-\sinh@@{u}\sinh@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{u- v} = \cosh@@{u}\cosh@@{v}-\sinh@@{u}\sinh@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u - v) = cosh(u)*cosh(v)- sinh(u)*sinh(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u - v] == Cosh[u]*Cosh[v]- Sinh[u]*Sinh[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E3 4.35.E3] || [[Item:Q1877|<math>\tanh@{u+ v} = \frac{\tanh@@{u}+\tanh@@{v}}{1+\tanh@@{u}\tanh@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{u+ v} = \frac{\tanh@@{u}+\tanh@@{v}}{1+\tanh@@{u}\tanh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u + v) = (tanh(u)+ tanh(v))/(1 + tanh(u)*tanh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u + v] == Divide[Tanh[u]+ Tanh[v],1 + Tanh[u]*Tanh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E3 4.35.E3] || [[Item:Q1877|<math>\tanh@{u- v} = \frac{\tanh@@{u}-\tanh@@{v}}{1-\tanh@@{u}\tanh@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{u- v} = \frac{\tanh@@{u}-\tanh@@{v}}{1-\tanh@@{u}\tanh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u - v) = (tanh(u)- tanh(v))/(1 - tanh(u)*tanh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u - v] == Divide[Tanh[u]- Tanh[v],1 - Tanh[u]*Tanh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E4 4.35.E4] || [[Item:Q1878|<math>\coth@{u+ v} = \frac{+\coth@@{u}\coth@@{v}+1}{\coth@@{u}+\coth@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@{u+ v} = \frac{+\coth@@{u}\coth@@{v}+1}{\coth@@{u}+\coth@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u + v) = (+ coth(u)*coth(v)+ 1)/(coth(u)+ coth(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u + v] == Divide[+ Coth[u]*Coth[v]+ 1,Coth[u]+ Coth[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.333014420201075*^14, -2.3525621062227262*^14]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.35.E4 4.35.E4] || [[Item:Q1878|<math>\coth@{u- v} = \frac{-\coth@@{u}\coth@@{v}+1}{\coth@@{u}-\coth@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@{u- v} = \frac{-\coth@@{u}\coth@@{v}+1}{\coth@@{u}-\coth@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u - v) = (- coth(u)*coth(v)+ 1)/(coth(u)- coth(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u - v] == Divide[- Coth[u]*Coth[v]+ 1,Coth[u]- Coth[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.35.E5 4.35.E5] || [[Item:Q1879|<math>\sinh@@{u}+\sinh@@{v} = 2\sinh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{u}+\sinh@@{v} = 2\sinh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u)+ sinh(v) = 2*sinh((u + v)/(2))*cosh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u]+ Sinh[v] == 2*Sinh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E6 4.35.E6] || [[Item:Q1880|<math>\sinh@@{u}-\sinh@@{v} = 2\cosh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{u}-\sinh@@{v} = 2\cosh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(u)- sinh(v) = 2*cosh((u + v)/(2))*sinh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[u]- Sinh[v] == 2*Cosh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E7 4.35.E7] || [[Item:Q1881|<math>\cosh@@{u}+\cosh@@{v} = 2\cosh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{u}+\cosh@@{v} = 2\cosh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u)+ cosh(v) = 2*cosh((u + v)/(2))*cosh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u]+ Cosh[v] == 2*Cosh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E8 4.35.E8] || [[Item:Q1882|<math>\cosh@@{u}-\cosh@@{v} = 2\sinh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{u}-\cosh@@{v} = 2\sinh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(u)- cosh(v) = 2*sinh((u + v)/(2))*sinh((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[u]- Cosh[v] == 2*Sinh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E9 4.35.E9] || [[Item:Q1883|<math>\tanh@@{u}+\tanh@@{v} = \frac{\sinh@{u+ v}}{\cosh@@{u}\cosh@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{u}+\tanh@@{v} = \frac{\sinh@{u+ v}}{\cosh@@{u}\cosh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u)+ tanh(v) = (sinh(u + v))/(cosh(u)*cosh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u]+ Tanh[v] == Divide[Sinh[u + v],Cosh[u]*Cosh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E9 4.35.E9] || [[Item:Q1883|<math>\tanh@@{u}-\tanh@@{v} = \frac{\sinh@{u- v}}{\cosh@@{u}\cosh@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{u}-\tanh@@{v} = \frac{\sinh@{u- v}}{\cosh@@{u}\cosh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(u)- tanh(v) = (sinh(u - v))/(cosh(u)*cosh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[u]- Tanh[v] == Divide[Sinh[u - v],Cosh[u]*Cosh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E10 4.35.E10] || [[Item:Q1884|<math>\coth@@{u}+\coth@@{v} = \frac{\sinh@{v+ u}}{\sinh@@{u}\sinh@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{u}+\coth@@{v} = \frac{\sinh@{v+ u}}{\sinh@@{u}\sinh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u)+ coth(v) = (sinh(v + u))/(sinh(u)*sinh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u]+ Coth[v] == Divide[Sinh[v + u],Sinh[u]*Sinh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E10 4.35.E10] || [[Item:Q1884|<math>\coth@@{u}-\coth@@{v} = \frac{\sinh@{v- u}}{\sinh@@{u}\sinh@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{u}-\coth@@{v} = \frac{\sinh@{v- u}}{\sinh@@{u}\sinh@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(u)- coth(v) = (sinh(v - u))/(sinh(u)*sinh(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[u]- Coth[v] == Divide[Sinh[v - u],Sinh[u]*Sinh[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E11 4.35.E11] || [[Item:Q1885|<math>\cosh^{2}@@{z}-\sinh^{2}@@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh^{2}@@{z}-\sinh^{2}@@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cosh(z))^(2)- (sinh(z))^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cosh[z])^(2)- (Sinh[z])^(2) == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E12 4.35.E12] || [[Item:Q1886|<math>\sech^{2}@@{z} = 1-\tanh^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sech^{2}@@{z} = 1-\tanh^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sech(z))^(2) = 1 - (tanh(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sech[z])^(2) == 1 - (Tanh[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E13 4.35.E13] || [[Item:Q1887|<math>\csch^{2}@@{z} = \coth^{2}@@{z}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csch^{2}@@{z} = \coth^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csch(z))^(2) = (coth(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csch[z])^(2) == (Coth[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E14 4.35.E14] || [[Item:Q1888|<math>2\sinh@@{u}\sinh@@{v} = \cosh@{u+v}-\cosh@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh@@{u}\sinh@@{v} = \cosh@{u+v}-\cosh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sinh(u)*sinh(v) = cosh(u + v)- cosh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sinh[u]*Sinh[v] == Cosh[u + v]- Cosh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E15 4.35.E15] || [[Item:Q1889|<math>2\cosh@@{u}\cosh@@{v} = \cosh@{u+v}+\cosh@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cosh@@{u}\cosh@@{v} = \cosh@{u+v}+\cosh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*cosh(u)*cosh(v) = cosh(u + v)+ cosh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Cosh[u]*Cosh[v] == Cosh[u + v]+ Cosh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E16 4.35.E16] || [[Item:Q1890|<math>2\sinh@@{u}\cosh@@{v} = \sinh@{u+v}+\sinh@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh@@{u}\cosh@@{v} = \sinh@{u+v}+\sinh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sinh(u)*cosh(v) = sinh(u + v)+ sinh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sinh[u]*Cosh[v] == Sinh[u + v]+ Sinh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E17 4.35.E17] || [[Item:Q1891|<math>\sinh^{2}@@{u}-\sinh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh^{2}@@{u}-\sinh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sinh(u))^(2)- (sinh(v))^(2) = sinh(u + v)*sinh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sinh[u])^(2)- (Sinh[v])^(2) == Sinh[u + v]*Sinh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E18 4.35.E18] || [[Item:Q1892|<math>\cosh^{2}@@{u}-\cosh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh^{2}@@{u}-\cosh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cosh(u))^(2)- (cosh(v))^(2) = sinh(u + v)*sinh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cosh[u])^(2)- (Cosh[v])^(2) == Sinh[u + v]*Sinh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E19 4.35.E19] || [[Item:Q1893|<math>\sinh^{2}@@{u}+\cosh^{2}@@{v} = \cosh@{u+v}\cosh@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh^{2}@@{u}+\cosh^{2}@@{v} = \cosh@{u+v}\cosh@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sinh(u))^(2)+ (cosh(v))^(2) = cosh(u + v)*cosh(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sinh[u])^(2)+ (Cosh[v])^(2) == Cosh[u + v]*Cosh[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.35.E20 4.35.E20] || [[Item:Q1894|<math>\sinh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh((z)/(2)) = ((cosh(z)- 1)/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[Divide[z,2]] == (Divide[Cosh[z]- 1,2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4585952894+.8655770340*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655716642-.5419255224*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4585952893468803, 0.8655770337160631]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8655716640572735, -0.5419255224573363]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.35.E21 4.35.E21] || [[Item:Q1895|<math>\cosh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}+1}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}+1}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh((z)/(2)) = ((cosh(z)+ 1)/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[Divide[z,2]] == (Divide[Cosh[z]+ 1,2])^(1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E22 4.35.E22] || [[Item:Q1896|<math>\tanh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh((z)/(2)) = ((cosh(z)- 1)/(cosh(z)+ 1))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[Divide[z,2]] == (Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5869891489+.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8595320616-.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5869891488727425, 0.858086492859854]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8595320613685857, -0.42117421488499707]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.35.E22 4.35.E22] || [[Item:Q1896|<math>\left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} = \frac{\cosh@@{z}-1}{\sinh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} = \frac{\cosh@@{z}-1}{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((cosh(z)- 1)/(cosh(z)+ 1))^(1/2) = (cosh(z)- 1)/(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2) == Divide[Cosh[z]- 1,Sinh[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5869891489-.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8595320615+.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5869891488727426, -0.8580864928598539]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.859532061368586, 0.42117421488499684]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.35.E22 4.35.E22] || [[Item:Q1896|<math>\frac{\cosh@@{z}-1}{\sinh@@{z}} = \frac{\sinh@@{z}}{\cosh@@{z}+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cosh@@{z}-1}{\sinh@@{z}} = \frac{\sinh@@{z}}{\cosh@@{z}+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cosh(z)- 1)/(sinh(z)) = (sinh(z))/(cosh(z)+ 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cosh[z]- 1,Sinh[z]] == Divide[Sinh[z],Cosh[z]+ 1]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E23 4.35.E23] || [[Item:Q1897|<math>\sinh@{-z} = -\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{-z} = -\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(- z) = - sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[- z] == - Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E24 4.35.E24] || [[Item:Q1898|<math>\cosh@{-z} = \cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{-z} = \cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(- z) = cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[- z] == Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E25 4.35.E25] || [[Item:Q1899|<math>\tanh@{-z} = -\tanh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{-z} = -\tanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(- z) = - tanh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[- z] == - Tanh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E26 4.35.E26] || [[Item:Q1900|<math>\sinh@{2z} = 2\sinh@@{z}\cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{2z} = 2\sinh@@{z}\cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(2*z) = 2*sinh(z)*cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[2*z] == 2*Sinh[z]*Cosh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E26 4.35.E26] || [[Item:Q1900|<math>2\sinh@@{z}\cosh@@{z} = \frac{2\tanh@@{z}}{1-\tanh^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh@@{z}\cosh@@{z} = \frac{2\tanh@@{z}}{1-\tanh^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sinh(z)*cosh(z) = (2*tanh(z))/(1 - (tanh(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sinh[z]*Cosh[z] == Divide[2*Tanh[z],1 - (Tanh[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E27 4.35.E27] || [[Item:Q1901|<math>\cosh@{2z} = 2\cosh^{2}@@{z}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{2z} = 2\cosh^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(2*z) = 2*(cosh(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[2*z] == 2*(Cosh[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E27 4.35.E27] || [[Item:Q1901|<math>2\cosh^{2}@@{z}-1 = 2\sinh^{2}@@{z}+1\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cosh^{2}@@{z}-1 = 2\sinh^{2}@@{z}+1\\</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(cosh(z))^(2)- 1 = 2*(sinh(z))^(2)+ 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Cosh[z])^(2)- 1 == 2*(Sinh[z])^(2)+ 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E27 4.35.E27] || [[Item:Q1901|<math>2\sinh^{2}@@{z}+1\\ = \cosh^{2}@@{z}+\sinh^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sinh^{2}@@{z}+1\\ = \cosh^{2}@@{z}+\sinh^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(sinh(z))^(2)+ 1 = (cosh(z))^(2)+ (sinh(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Sinh[z])^(2)+ 1 == (Cosh[z])^(2)+ (Sinh[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E28 4.35.E28] || [[Item:Q1902|<math>\tanh@{2z} = \frac{2\tanh@@{z}}{1+\tanh^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@{2z} = \frac{2\tanh@@{z}}{1+\tanh^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(2*z) = (2*tanh(z))/(1 + (tanh(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[2*z] == Divide[2*Tanh[z],1 + (Tanh[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E29 4.35.E29] || [[Item:Q1903|<math>\sinh@{3z} = 3\sinh@@{z}+4\sinh^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{3z} = 3\sinh@@{z}+4\sinh^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(3*z) = 3*sinh(z)+ 4*(sinh(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[3*z] == 3*Sinh[z]+ 4*(Sinh[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E30 4.35.E30] || [[Item:Q1904|<math>\cosh@{3z} = -3\cosh@@{z}+4\cosh^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{3z} = -3\cosh@@{z}+4\cosh^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(3*z) = - 3*cosh(z)+ 4*(cosh(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[3*z] == - 3*Cosh[z]+ 4*(Cosh[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E31 4.35.E31] || [[Item:Q1905|<math>\sinh@{4z} = 4\sinh^{3}@@{z}\cosh@@{z}+4\cosh^{3}@@{z}\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@{4z} = 4\sinh^{3}@@{z}\cosh@@{z}+4\cosh^{3}@@{z}\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(4*z) = 4*(sinh(z))^(3)* cosh(z)+ 4*(cosh(z))^(3)* sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[4*z] == 4*(Sinh[z])^(3)* Cosh[z]+ 4*(Cosh[z])^(3)* Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E32 4.35.E32] || [[Item:Q1906|<math>\cosh@{4z} = \cosh^{4}@@{z}+6\sinh^{2}@@{z}\cosh^{2}@@{z}+\sinh^{4}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{4z} = \cosh^{4}@@{z}+6\sinh^{2}@@{z}\cosh^{2}@@{z}+\sinh^{4}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(4*z) = (cosh(z))^(4)+ 6*(sinh(z))^(2)* (cosh(z))^(2)+ (sinh(z))^(4)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[4*z] == (Cosh[z])^(4)+ 6*(Sinh[z])^(2)* (Cosh[z])^(2)+ (Sinh[z])^(4)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E33 4.35.E33] || [[Item:Q1907|<math>\cosh@{nz}+\sinh@{nz} = (\cosh@@{z}+\sinh@@{z})^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{nz}+\sinh@{nz} = (\cosh@@{z}+\sinh@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(n*z)+ sinh(n*z) = (cosh(z)+ sinh(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[n*z]+ Sinh[n*z] == (Cosh[z]+ Sinh[z])^(n)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E33 4.35.E33] || [[Item:Q1907|<math>\cosh@{nz}-\sinh@{nz} = (\cosh@@{z}-\sinh@@{z})^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@{nz}-\sinh@{nz} = (\cosh@@{z}-\sinh@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(n*z)- sinh(n*z) = (cosh(z)- sinh(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[n*z]- Sinh[n*z] == (Cosh[z]- Sinh[z])^(n)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.35.E34 4.35.E34] || [[Item:Q1908|<math>\sinh@@{z} = \sinh@@{x}\cos@@{y}+i\cosh@@{x}\sin@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{z} = \sinh@@{x}\cos@@{y}+i\cosh@@{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(x + y*I) = sinh(x)*cos(y)+ I*cosh(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[x + y*I] == Sinh[x]*Cos[y]+ I*Cosh[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E35 4.35.E35] || [[Item:Q1909|<math>\cosh@@{z} = \cosh@@{x}\cos@@{y}+i\sinh@@{x}\sin@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z} = \cosh@@{x}\cos@@{y}+i\sinh@@{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(x + y*I) = cosh(x)*cos(y)+ I*sinh(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[x + y*I] == Cosh[x]*Cos[y]+ I*Sinh[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E36 4.35.E36] || [[Item:Q1910|<math>\tanh@@{z} = \frac{\sinh@{2x}+i\sin@{2y}}{\cosh@{2x}+\cos@{2y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tanh@@{z} = \frac{\sinh@{2x}+i\sin@{2y}}{\cosh@{2x}+\cos@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tanh(x + y*I) = (sinh(2*x)+ I*sin(2*y))/(cosh(2*x)+ cos(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tanh[x + y*I] == Divide[Sinh[2*x]+ I*Sin[2*y],Cosh[2*x]+ Cos[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E37 4.35.E37] || [[Item:Q1911|<math>\coth@@{z} = \frac{\sinh@{2x}-i\sin@{2y}}{\cosh@{2x}-\cos@{2y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{z} = \frac{\sinh@{2x}-i\sin@{2y}}{\cosh@{2x}-\cos@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(x + y*I) = (sinh(2*x)- I*sin(2*y))/(cosh(2*x)- cos(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[x + y*I] == Divide[Sinh[2*x]- I*Sin[2*y],Cosh[2*x]- Cos[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E38 4.35.E38] || [[Item:Q1912|<math>|\sinh@@{z}| = (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{z}| = (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(x + y*I)) = ((sinh(x))^(2)+ (sin(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[x + y*I]] == ((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E38 4.35.E38] || [[Item:Q1912|<math>(\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}-\cos@{2y})\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}-\cos@{2y})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sinh(x))^(2)+ (sin(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)- cos(2*y)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]- Cos[2*y]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E39 4.35.E39] || [[Item:Q1913|<math>|\cosh@@{z}| = (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cosh@@{z}| = (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cosh(x + y*I)) = ((sinh(x))^(2)+ (cos(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cosh[x + y*I]] == ((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E39 4.35.E39] || [[Item:Q1913|<math>(\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}+\cos@{2y})\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}+\cos@{2y})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sinh(x))^(2)+ (cos(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)+ cos(2*y)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]+ Cos[2*y]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.35.E40 4.35.E40] || [[Item:Q1914|<math>|\tanh@@{z}| = \left(\frac{\cosh@{2x}-\cos@{2y}}{\cosh@{2x}+\cos@{2y}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\tanh@@{z}| = \left(\frac{\cosh@{2x}-\cos@{2y}}{\cosh@{2x}+\cos@{2y}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(tanh(x + y*I)) = ((cosh(2*x)- cos(2*y))/(cosh(2*x)+ cos(2*y)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Tanh[x + y*I]] == (Divide[Cosh[2*x]- Cos[2*y],Cosh[2*x]+ Cos[2*y]])^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.36.E1 4.36.E1] || [[Item:Q1915|<math>\sinh@@{z} = z\prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{n^{2}\pi^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinh@@{z} = z\prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{n^{2}\pi^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sinh(z) = z*product(1 +((z)^(2))/((n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sinh[z] == z*Product[1 +Divide[(z)^(2),(n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.36.E2 4.36.E2] || [[Item:Q1916|<math>\cosh@@{z} = \prod_{n=1}^{\infty}\left(1+\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosh@@{z} = \prod_{n=1}^{\infty}\left(1+\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cosh(z) = product(1 +(4*(z)^(2))/((2*n - 1)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cosh[z] == Product[1 +Divide[4*(z)^(2),(2*n - 1)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.36.E3 4.36.E3] || [[Item:Q1917|<math>\coth@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}+n^{2}\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coth@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}+n^{2}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>coth(z) = (1)/(z)+ 2*z*sum((1)/((z)^(2)+ (n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Coth[z] == Divide[1,z]+ 2*z*Sum[Divide[1,(z)^(2)+ (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.36.E4 4.36.E4] || [[Item:Q1918|<math>\csch^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi i)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csch^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi i)^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csch(z))^(2) = sum((1)/((z - n*Pi*I)^(2)), n = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csch[z])^(2) == Sum[Divide[1,(z - n*Pi*I)^(2)], {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.36.E5 4.36.E5] || [[Item:Q1919|<math>\csch@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}+n^{2}\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csch@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}+n^{2}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csch(z) = (1)/(z)+ 2*z*sum(((- 1)^(n))/((z)^(2)+ (n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csch[z] == Divide[1,z]+ 2*z*Sum[Divide[(- 1)^(n),(z)^(2)+ (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E1 4.37.E1] || [[Item:Q1920|<math>\Asinh@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1+t^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1+t^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[z] == Integrate[Divide[1,(1 + (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E2 4.37.E2] || [[Item:Q1921|<math>\Acosh@@{z} = \int_{1}^{z}\frac{\diff{t}}{(t^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acosh@@{z} = \int_{1}^{z}\frac{\diff{t}}{(t^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[z] == Integrate[Divide[1,((t)^(2)- 1)^(1/2)], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/4.37.E3 4.37.E3] || [[Item:Q1922|<math>\Atanh@@{z} = \int_{0}^{z}\frac{\diff{t}}{1-t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@@{z} = \int_{0}^{z}\frac{\diff{t}}{1-t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[z] == Integrate[Divide[1,1 - (t)^(2)], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E4 4.37.E4] || [[Item:Q1923|<math>\Acsch@@{z} = \Asinh@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acsch@@{z} = \Asinh@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsch[z] == ArcSinh[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E5 4.37.E5] || [[Item:Q1924|<math>\Asech@@{z} = \Acosh@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asech@@{z} = \Acosh@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSech[z] == ArcCosh[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E6 4.37.E6] || [[Item:Q1925|<math>\Acoth@@{z} = \Atanh@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acoth@@{z} = \Atanh@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCoth[z] == ArcTanh[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E7 4.37.E7] || [[Item:Q1926|<math>\acsch@@{z} = \asinh@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsch@@{z} = \asinh@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccsch(z) = arcsinh(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsch[z] == ArcSinh[1/z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E8 4.37.E8] || [[Item:Q1927|<math>\asech@@{z} = \acosh@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asech@@{z} = \acosh@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsech(z) = arccosh(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSech[z] == ArcCosh[1/z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E9 4.37.E9] || [[Item:Q1928|<math>\acoth@@{z} = \atanh@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acoth@@{z} = \atanh@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccoth(z) = arctanh(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCoth[z] == ArcTanh[1/z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E10 4.37.E10] || [[Item:Q1929|<math>\asinh@{-z} = -\asinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@{-z} = -\asinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsinh(- z) = - arcsinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[- z] == - ArcSinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E11 4.37.E11] || [[Item:Q1930|<math>\acosh@{-z} = +\pi i+\acosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@{-z} = +\pi i+\acosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(- z) = + Pi*I + arccosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[- z] == + Pi*I + ArcCosh[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.094395103*I
Test Values: {z = .5, Im(z) = 1/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[z, Complex[0, Rational[1, 2]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E11 4.37.E11] || [[Item:Q1930|<math>\acosh@{-z} = -\pi i+\acosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@{-z} = -\pi i+\acosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(- z) = - Pi*I + arccosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[- z] == - Pi*I + ArcCosh[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z = 1/2-1/2*I*3^(1/2), Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I
Test Values: {z = 1.5, Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790205*I
Test Values: {z = .5, Im(z) = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E12 4.37.E12] || [[Item:Q1931|<math>\atanh@{-z} = -\atanh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atanh@{-z} = -\atanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctanh(- z) = - arctanh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[- z] == - ArcTanh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E13 4.37.E13] || [[Item:Q1932|<math>\acsch@{-z} = -\acsch@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsch@{-z} = -\acsch@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccsch(- z) = - arccsch(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsch[- z] == - ArcCsch[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.37.E14 4.37.E14] || [[Item:Q1933|<math>\asech@{-z} = -\pi i+\asech@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asech@{-z} = -\pi i+\asech@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsech(- z) = - Pi*I + arcsech(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSech[- z] == - Pi*I + ArcSech[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.601047966*I
Test Values: {z = 1.5, Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I
Test Values: {z = .5, Im(z) = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[z, Complex[0, Rational[1, 2]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E14 4.37.E14] || [[Item:Q1933|<math>\asech@{-z} = +\pi i+\asech@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asech@{-z} = +\pi i+\asech@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsech(- z) = + Pi*I + arcsech(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSech[- z] == + Pi*I + ArcSech[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I
Test Values: {z = 1/2-1/2*I*3^(1/2), Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.682137342*I
Test Values: {z = 1.5, Im(z) = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.094395103*I
Test Values: {z = 2, Im(z) = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E15 4.37.E15] || [[Item:Q1934|<math>\acoth@{-z} = -\acoth@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acoth@{-z} = -\acoth@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccoth(- z) = - arccoth(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCoth[- z] == - ArcCoth[z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-3.141592654*I
Test Values: {z = .5, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E16 4.37.E16] || [[Item:Q1935|<math>\asinh@@{z} = \ln@{(z^{2}+1)^{1/2}+z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@@{z} = \ln@{(z^{2}+1)^{1/2}+z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsinh(z) = ln(((z)^(2)+ 1)^(1/2)+ z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[z] == Log[((z)^(2)+ 1)^(1/2)+ z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E17 4.37.E17] || [[Item:Q1936|<math>\asinh@{iy} = \tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}+y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@{iy} = \tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}+y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsinh(I*y) = (1)/(2)*Pi*I + ln(((y)^(2)- 1)^(1/2)+ y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[I*y] == Divide[1,2]*Pi*I + Log[((y)^(2)- 1)^(1/2)+ y]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7e-9-6.283185308*I
Test Values: {y = -1.5, y = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1347500000e-10-4.188790205*I
Test Values: {y = -.5, y = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1347500000e-10-2.094395102*I
Test Values: {y = .5, y = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2e-8-6.283185308*I
Test Values: {y = -2, y = 3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E17 4.37.E17] || [[Item:Q1936|<math>\asinh@{iy} = \tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}+y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@{iy} = \tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}+y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsinh(I*y) = (1)/(2)*Pi*I - ln(((y)^(2)- 1)^(1/2)+ y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[I*y] == Divide[1,2]*Pi*I - Log[((y)^(2)- 1)^(1/2)+ y]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.924847301+0.*I
Test Values: {y = -1.5, y = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.924847300+0.*I
Test Values: {y = 1.5, y = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.633915796+0.*I
Test Values: {y = -2, y = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.633915794+0.*I
Test Values: {y = 2, y = 3/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.9248473002384139, 0.0]
Test Values: {Rule[y, Rational[3, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E18 4.37.E18] || [[Item:Q1937|<math>\asinh@{iy} = -\tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}-y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@{iy} = -\tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}-y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsinh(I*y) = -(1)/(2)*Pi*I + ln(((y)^(2)- 1)^(1/2)- y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[I*y] == -Divide[1,2]*Pi*I + Log[((y)^(2)- 1)^(1/2)- y]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.924847300+0.*I
Test Values: {y = -1.5, y = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.924847301+0.*I
Test Values: {y = 1.5, y = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.633915794+0.*I
Test Values: {y = -2, y = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.633915796+0.*I
Test Values: {y = 2, y = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.633915793849633, 0.0]
Test Values: {Rule[y, -2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E18 4.37.E18] || [[Item:Q1937|<math>\asinh@{iy} = -\tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}-y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@{iy} = -\tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}-y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsinh(I*y) = -(1)/(2)*Pi*I - ln(((y)^(2)- 1)^(1/2)- y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[I*y] == -Divide[1,2]*Pi*I - Log[((y)^(2)- 1)^(1/2)- y]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.7e-9+6.283185308*I
Test Values: {y = 1.5, y = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1347500000e-10+2.094395102*I
Test Values: {y = -.5, y = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1347500000e-10+4.188790205*I
Test Values: {y = .5, y = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2e-8+6.283185308*I
Test Values: {y = 2, y = -2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E19 4.37.E19] || [[Item:Q1938|<math>\acosh@@{z} = \ln@{+(z^{2}-1)^{1/2}+z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{z} = \ln@{+(z^{2}-1)^{1/2}+z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(z) = ln(+((z)^(2)- 1)^(1/2)+ z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[z] == Log[+((z)^(2)- 1)^(1/2)+ z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.662885893+3.891061519*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.316957897-4.712388980*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E19 4.37.E19] || [[Item:Q1938|<math>\acosh@@{z} = \ln@{-(z^{2}-1)^{1/2}+z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{z} = \ln@{-(z^{2}-1)^{1/2}+z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(z) = ln(-((z)^(2)- 1)^(1/2)+ z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[z] == Log[-((z)^(2)- 1)^(1/2)+ z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.316957897+1.570796326*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.662885893-2.392123788*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.924847301
Test Values: {z = 1.5, z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1347500000e-10+2.094395102*I
Test Values: {z = .5, z = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.9248473002384139
Test Values: {Rule[z, Rational[3, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E20 4.37.E20] || [[Item:Q1939|<math>\acosh@{\iunit y} = +\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}+ y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@{\iunit y} = +\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}+ y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(I*y) = +(1)/(2)*Pi*I + ln(((y)^(2)+ 1)^(1/2)+ y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[I*y] == +Divide[1,2]*Pi*I + Log[((y)^(2)+ 1)^(1/2)+ y]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.389526433-3.141592654*I
Test Values: {y = -1.5, y = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9624236498-3.141592654*I
Test Values: {y = -.5, y = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.887270952-3.141592654*I
Test Values: {y = -2, y = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E20 4.37.E20] || [[Item:Q1939|<math>\acosh@{\iunit y} = -\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}- y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@{\iunit y} = -\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}- y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(I*y) = -(1)/(2)*Pi*I + ln(((y)^(2)+ 1)^(1/2)- y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[I*y] == -Divide[1,2]*Pi*I + Log[((y)^(2)+ 1)^(1/2)- y]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.389526433+3.141592654*I
Test Values: {y = 1.5, y = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9624236498+3.141592654*I
Test Values: {y = .5, y = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.887270952+3.141592654*I
Test Values: {y = 2, y = 1/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9624236501192068, 3.141592653589793]
Test Values: {Rule[y, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E21 4.37.E21] || [[Item:Q1940|<math>\acosh@@{z} = 2\ln@{\left(\frac{z+1}{2}\right)^{1/2}+\left(\frac{z-1}{2}\right)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{z} = 2\ln@{\left(\frac{z+1}{2}\right)^{1/2}+\left(\frac{z-1}{2}\right)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(z) = 2*ln(((z + 1)/(2))^(1/2)+((z - 1)/(2))^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[z] == 2*Log[(Divide[z + 1,2])^(1/2)+(Divide[z - 1,2])^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E22 4.37.E22] || [[Item:Q1941|<math>\acosh@@{x} = +\ln@{i(1-x^{2})^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{x} = +\ln@{i(1-x^{2})^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(x) = + ln(I*(1 - (x)^(2))^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[x] == + Log[I*(1 - (x)^(2))^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.924847301
Test Values: {x = 1.5, x = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.633915796
Test Values: {x = 2, x = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E22 4.37.E22] || [[Item:Q1941|<math>\acosh@@{x} = -\ln@{i(1-x^{2})^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{x} = -\ln@{i(1-x^{2})^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(x) = - ln(I*(1 - (x)^(2))^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[x] == - Log[I*(1 - (x)^(2))^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1347500000e-10+2.094395102*I
Test Values: {x = .5, x = 1/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 2.0943951023931953]
Test Values: {Rule[x, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E23 4.37.E23] || [[Item:Q1942|<math>\acosh@@{x} = +\pi i+\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{x} = +\pi i+\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(x) = + Pi*I + ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[x] == + Pi*I + Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.924847301-6.283185308*I
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1347500000e-10-4.188790205*I
Test Values: {x = .5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.633915796-6.283185308*I
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E23 4.37.E23] || [[Item:Q1942|<math>\acosh@@{x} = -\pi i+\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{x} = -\pi i+\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccosh(x) = - Pi*I + ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[x] == - Pi*I + Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.924847301+0.*I
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1347500000e-10+2.094395103*I
Test Values: {x = .5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.633915796+0.*I
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[x, -2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E24 4.37.E24] || [[Item:Q1943|<math>\atanh@@{z} = \tfrac{1}{2}\ln@{\frac{1+z}{1-z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atanh@@{z} = \tfrac{1}{2}\ln@{\frac{1+z}{1-z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctanh(z) = (1)/(2)*ln((1 + z)/(1 - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[z] == Divide[1,2]*Log[Divide[1 + z,1 - z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2e-9-3.141592654*I
Test Values: {z = 1.5, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2e-9-3.141592654*I
Test Values: {z = 2, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E25 4.37.E25] || [[Item:Q1944|<math>\atanh@@{x} = +\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atanh@@{x} = +\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctanh(x) = +(1)/(2)*Pi*I +(1)/(2)*ln((x + 1)/(x - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[x] == +Divide[1,2]*Pi*I +Divide[1,2]*Log[Divide[x + 1,x - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2e-9-3.141592654*I
Test Values: {x = 1.5, x = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2e-9-3.141592654*I
Test Values: {x = .5, x = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2e-9-3.141592654*I
Test Values: {x = 2, x = -3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.37.E25 4.37.E25] || [[Item:Q1944|<math>\atanh@@{x} = -\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atanh@@{x} = -\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctanh(x) = -(1)/(2)*Pi*I +(1)/(2)*ln((x + 1)/(x - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[x] == -Divide[1,2]*Pi*I +Divide[1,2]*Log[Divide[x + 1,x - 1]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.1102230246251565*^-16, 3.141592653589793]
Test Values: {Rule[x, Rational[-3, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.37.E26 4.37.E26] || [[Item:Q1945|<math>z = \sinh@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \sinh@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = sinh(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Sinh[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .73886869e-2-.1707313589*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.358636717+.1952940451*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3586367171-1.536756763*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.724662121-1.170731359*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.007388686967293889, -0.17073135880721174]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.3586367168171445, 0.19529404497722702]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E27 4.37.E27] || [[Item:Q1946|<math>z = \cosh@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \cosh@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = cosh(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Cosh[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3617401130+.309246236e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.727765517+.3969500276*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7277655170-1.335100780*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.093790921-.9690753764*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3617401130796717, 0.030924623731496126]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.7277655168641102, 0.3969500275159349]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E28 4.37.E28] || [[Item:Q1947|<math>z = \tanh@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \tanh@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = tanh(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Tanh[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .736226475e-1+.2564398629*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.292402756+.6224652669*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2924027565-1.109585541*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.658428160-.7435601371*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.07362264736640245, 0.25643986284286624]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.292402756418036, 0.622465266627305]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E29 4.37.E29] || [[Item:Q1948|<math>w = \Asinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Asinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcSinh[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.03458245825512818, 0.12526556729125993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.524504352246847, -0.28539816339744856]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E29 4.37.E29] || [[Item:Q1948|<math>\Asinh@@{z} = (-1)^{k}\asinh@@{z}+k\pi i</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@@{z} = (-1)^{k}\asinh@@{z}+k\pi i</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[z] == (- 1)^(k)* ArcSinh[z]+ k*Pi*I</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.662885891058621, -2.392123788172313]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E30 4.37.E30] || [[Item:Q1949|<math>w = \Acosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Acosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcCosh[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.20754645532203042, -0.28539816339744833]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.03458245825512796, -1.4455307595036366]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E30 4.37.E30] || [[Item:Q1949|<math>\Acosh@@{z} = +\acosh@@{z}+2k\pi i</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acosh@@{z} = +\acosh@@{z}+2k\pi i</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[z] == + ArcCosh[z]+ 2*k*Pi*I</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E30 4.37.E30] || [[Item:Q1949|<math>\Acosh@@{z} = -\acosh@@{z}+2k\pi i</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acosh@@{z} = -\acosh@@{z}+2k\pi i</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[z] == - ArcCosh[z]+ 2*k*Pi*I</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.3169578969248166, -4.71238898038469]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.3169578969248166, -10.995574287564276]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E31 4.37.E31] || [[Item:Q1950|<math>w = \Atanh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Atanh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcTanh[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3167192594503839, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.0493061443340546, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.37.E31 4.37.E31] || [[Item:Q1950|<math>\Atanh@@{z} = \atanh@@{z}+k\pi i</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@@{z} = \atanh@@{z}+k\pi i</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[z] == ArcTanh[z]+ k*Pi*I</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E4 4.38.E4] || [[Item:Q1954|<math>\acosh@@{z} = (2(z-1))^{1/2}\*{\left(1+\sum_{n=1}^{\infty}(-1)^{n}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}n!(2n+1)}(z-1)^{n}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@@{z} = (2(z-1))^{1/2}\*{\left(1+\sum_{n=1}^{\infty}(-1)^{n}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}n!(2n+1)}(z-1)^{n}\right)}</syntaxhighlight> || <math>\realpart@@{z} > 0, |z-1| \leq 2</math> || <syntaxhighlight lang=mathematica>arccosh(z) = (2*(z - 1))^(1/2)*(1 + sum((- 1)^(n)*(1 * 3 * 5*(2*n - 1))/((2)^(2*n)* factorial(n)*(2*n + 1))*(z - 1)^(n), n = 1..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[z] == (2*(z - 1))^(1/2)*(1 + Sum[(- 1)^(n)*Divide[1 * 3 * 5*(2*n - 1),(2)^(2*n)* (n)!*(2*n + 1)]*(z - 1)^(n), {n, 1, Infinity}, GenerateConditions->None])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5552108774+.3065228369*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.819822265-.3498215011*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5204832489
Test Values: {z = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.651724541*I
Test Values: {z = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5552108781095244, 0.30652283644847583]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.8198222655846492, -0.34982149976378074]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.38.E8 4.38.E8] || [[Item:Q1958|<math>x^{2}-y^{2} = \tfrac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x^{2}-y^{2} = \tfrac{1}{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x)^(2)- (y)^(2) = (1)/(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x)^(2)- (y)^(2) == Divide[1,2]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.38.E9 4.38.E9] || [[Item:Q1959|<math>\deriv{}{z}\asinh@@{z} = (1+z^{2})^{-1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\asinh@@{z} = (1+z^{2})^{-1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arcsinh(z), z) = (1 + (z)^(2))^(- 1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcSinh[z], z] == (1 + (z)^(2))^(- 1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.38.E10 4.38.E10] || [[Item:Q1960|<math>\deriv{}{z}\acosh@@{z} = +(z^{2}-1)^{-1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acosh@@{z} = +(z^{2}-1)^{-1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccosh(z), z) = +((z)^(2)- 1)^(- 1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCosh[z], z] == +((z)^(2)- 1)^(- 1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3933198932-1.467889825*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.000000000+1.732050808*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.38.E10 4.38.E10] || [[Item:Q1960|<math>\deriv{}{z}\acosh@@{z} = -(z^{2}-1)^{-1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acosh@@{z} = -(z^{2}-1)^{-1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccosh(z), z) = -((z)^(2)- 1)^(- 1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCosh[z], z] == -((z)^(2)- 1)^(- 1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.000000000-1.732050808*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3933198932+1.467889825*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.788854382
Test Values: {z = 1.5, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.309401076*I
Test Values: {z = .5, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -2.3094010767585034]
Test Values: {Rule[z, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.38.E11 4.38.E11] || [[Item:Q1961|<math>\deriv{}{z}\atanh@@{z} = \frac{1}{1-z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\atanh@@{z} = \frac{1}{1-z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arctanh(z), z) = (1)/(1 - (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcTanh[z], z] == Divide[1,1 - (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.38.E12 4.38.E12] || [[Item:Q1962|<math>\deriv{}{z}\acsch@@{z} = -\frac{1}{z(1+z^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acsch@@{z} = -\frac{1}{z(1+z^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccsch(z), z) = -(1)/(z*(1 + (z)^(2))^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCsch[z], z] == -Divide[1,z*(1 + (z)^(2))^(1/2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6696152420e-9-2.000000000*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.074569932+1.074569932*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.38.E12 4.38.E12] || [[Item:Q1962|<math>\deriv{}{z}\acsch@@{z} = +\frac{1}{z(1+z^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acsch@@{z} = +\frac{1}{z(1+z^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccsch(z), z) = +(1)/(z*(1 + (z)^(2))^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCsch[z], z] == +Divide[1,z*(1 + (z)^(2))^(1/2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.074569932+1.074569932*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6696152420e-9-2.000000000*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7396002616
Test Values: {z = 1.5, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.577708764
Test Values: {z = .5, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.5777087639996634
Test Values: {Rule[z, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.38.E13 4.38.E13] || [[Item:Q1963|<math>\deriv{}{z}\asech@@{z} = -\frac{1}{z(1-z^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\asech@@{z} = -\frac{1}{z(1-z^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arcsech(z), z) = -(1)/(z*(1 - (z)^(2))^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcSech[z], z] == -Divide[1,z*(1 - (z)^(2))^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.38.E14 4.38.E14] || [[Item:Q1964|<math>\deriv{}{z}\acoth@@{z} = \frac{1}{1-z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\acoth@@{z} = \frac{1}{1-z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(arccoth(z), z) = (1)/(1 - (z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ArcCoth[z], z] == Divide[1,1 - (z)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.38.E15 4.38.E15] || [[Item:Q1965|<math>\Asinh@@{u}+\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}+ v(1+u^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@@{u}+\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}+ v(1+u^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[u]+ ArcSinh[v] == ArcSinh[u*(1 + (v)^(2))^(1/2)+ v*(1 + (u)^(2))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.633915793849633, 4.440892098500626*^-16]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.38.E15 4.38.E15] || [[Item:Q1965|<math>\Asinh@@{u}-\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}- v(1+u^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@@{u}-\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}- v(1+u^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[u]- ArcSinh[v] == ArcSinh[u*(1 + (v)^(2))^(1/2)- v*(1 + (u)^(2))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.38.E16 4.38.E16] || [[Item:Q1966|<math>\Acosh@@{u}+\Acosh@@{v} = \Acosh@{uv+((u^{2}-1)(v^{2}-1))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acosh@@{u}+\Acosh@@{v} = \Acosh@{uv+((u^{2}-1)(v^{2}-1))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[u]+ ArcCosh[v] == ArcCosh[u*v +(((u)^(2)- 1)*((v)^(2)- 1))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [60 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.3169578969248166, 1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.316957896924817, 1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E16 4.38.E16] || [[Item:Q1966|<math>\Acosh@@{u}-\Acosh@@{v} = \Acosh@{uv-((u^{2}-1)(v^{2}-1))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acosh@@{u}-\Acosh@@{v} = \Acosh@{uv-((u^{2}-1)(v^{2}-1))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[u]- ArcCosh[v] == ArcCosh[u*v -(((u)^(2)- 1)*((v)^(2)- 1))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [80 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.3169578969248166, -1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.6628858910586213, -3.8910615190072733]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E17 4.38.E17] || [[Item:Q1967|<math>\Atanh@@{u}+\Atanh@@{v} = \Atanh@{\frac{u+ v}{1+ uv}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@@{u}+\Atanh@@{v} = \Atanh@{\frac{u+ v}{1+ uv}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[u]+ ArcTanh[v] == ArcTanh[Divide[u + v,1 + u*v]]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.38.E17 4.38.E17] || [[Item:Q1967|<math>\Atanh@@{u}-\Atanh@@{v} = \Atanh@{\frac{u- v}{1- uv}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@@{u}-\Atanh@@{v} = \Atanh@{\frac{u- v}{1- uv}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[u]- ArcTanh[v] == ArcTanh[Divide[u - v,1 - u*v]]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.38.E18 4.38.E18] || [[Item:Q1968|<math>\Asinh@@{u}+\Acosh@@{v} = \Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@@{u}+\Acosh@@{v} = \Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[u]+ ArcCosh[v] == ArcSinh[u*v +((1 + (u)^(2))*((v)^(2)- 1))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [53 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.66288587615746, 3.891061504106112]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.6628858910586204, -2.3921237881723125]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E18 4.38.E18] || [[Item:Q1968|<math>\Asinh@@{u}-\Acosh@@{v} = \Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@@{u}-\Acosh@@{v} = \Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[u]- ArcCosh[v] == ArcSinh[u*v -((1 + (u)^(2))*((v)^(2)- 1))^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [53 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.6628858910586208, -2.392123788172313]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.6628858910586208, 3.8910615190072733]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E18 4.38.E18] || [[Item:Q1968|<math>\Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}+ u(v^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}+ u(v^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[u*v +((1 + (u)^(2))*((v)^(2)- 1))^(1/2)] == ArcCosh[v*(1 + (u)^(2))^(1/2)+ u*((v)^(2)- 1)^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [65 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.4901161193847656*^-8, -3.141592638688632]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.34592799413380415, -2.320265192212377]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E18 4.38.E18] || [[Item:Q1968|<math>\Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}- u(v^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}- u(v^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[u*v -((1 + (u)^(2))*((v)^(2)- 1))^(1/2)] == ArcCosh[v*(1 + (u)^(2))^(1/2)- u*((v)^(2)- 1)^(1/2)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [86 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.325771782117242, -1.4989377308349603]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.9798437879834374, 0.8213274613774169]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E19 4.38.E19] || [[Item:Q1969|<math>\Atanh@@{u}+\Acoth@@{v} = \Atanh@{\frac{uv+ 1}{v+ u}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@@{u}+\Acoth@@{v} = \Atanh@{\frac{uv+ 1}{v+ u}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[u]+ ArcCoth[v] == ArcTanh[Divide[u*v + 1,v + u]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, -0.5]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.38.E19 4.38.E19] || [[Item:Q1969|<math>\Atanh@@{u}-\Acoth@@{v} = \Atanh@{\frac{uv- 1}{v- u}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@@{u}-\Acoth@@{v} = \Atanh@{\frac{uv- 1}{v- u}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[u]- ArcCoth[v] == ArcTanh[Divide[u*v - 1,v - u]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, 0.5]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.38.E19 4.38.E19] || [[Item:Q1969|<math>\Atanh@{\frac{uv+ 1}{v+ u}} = \Acoth@{\frac{v+ u}{uv+ 1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@{\frac{uv+ 1}{v+ u}} = \Acoth@{\frac{v+ u}{uv+ 1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[Divide[u*v + 1,v + u]] == ArcCoth[Divide[v + u,u*v + 1]]</syntaxhighlight> || Missing Macro Error || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.38.E19 4.38.E19] || [[Item:Q1969|<math>\Atanh@{\frac{uv- 1}{v- u}} = \Acoth@{\frac{v- u}{uv- 1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atanh@{\frac{uv- 1}{v- u}} = \Acoth@{\frac{v- u}{uv- 1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[Divide[u*v - 1,v - u]] == ArcCoth[Divide[v - u,u*v - 1]]</syntaxhighlight> || Missing Macro Error || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.40.E1 4.40.E1] || [[Item:Q1973|<math>\int\sinh@@{x}\diff{x} = \cosh@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sinh@@{x}\diff{x} = \cosh@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sinh(x), x) = cosh(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sinh[x], x, GenerateConditions->None] == Cosh[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E2 4.40.E2] || [[Item:Q1974|<math>\int\cosh@@{x}\diff{x} = \sinh@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cosh@@{x}\diff{x} = \sinh@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cosh(x), x) = sinh(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cosh[x], x, GenerateConditions->None] == Sinh[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E3 4.40.E3] || [[Item:Q1975|<math>\int\tanh@@{x}\diff{x} = \ln@{\cosh@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\tanh@@{x}\diff{x} = \ln@{\cosh@@{x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(tanh(x), x) = ln(cosh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Tanh[x], x, GenerateConditions->None] == Log[Cosh[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E4 4.40.E4] || [[Item:Q1976|<math>\int\csch@@{x}\diff{x} = \ln@{\tanh@{\tfrac{1}{2}x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\csch@@{x}\diff{x} = \ln@{\tanh@{\tfrac{1}{2}x}}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(csch(x), x) = ln(tanh((1)/(2)*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Csch[x], x, GenerateConditions->None] == Log[Tanh[Divide[1,2]*x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E5 4.40.E5] || [[Item:Q1977|<math>\int\sech@@{x}\diff{x} = \Gudermannian@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sech@@{x}\diff{x} = \Gudermannian@{x}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(sech(x), x) = arctan(sinh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sech[x], x, GenerateConditions->None] == Gudermannian[x]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E6 4.40.E6] || [[Item:Q1978|<math>\int\coth@@{x}\diff{x} = \ln@{\sinh@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\coth@@{x}\diff{x} = \ln@{\sinh@@{x}}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(coth(x), x) = ln(sinh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Coth[x], x, GenerateConditions->None] == Log[Sinh[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E7 4.40.E7] || [[Item:Q1979|<math>\int_{0}^{\infty}e^{-x}\frac{\sin@{ax}}{\sinh@@{x}}\diff{x} = \tfrac{1}{2}\pi\coth@{\tfrac{1}{2}\pi a}-\frac{1}{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-x}\frac{\sin@{ax}}{\sinh@@{x}}\diff{x} = \tfrac{1}{2}\pi\coth@{\tfrac{1}{2}\pi a}-\frac{1}{a}</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>int(exp(- x)*(sin(a*x))/(sinh(x)), x = 0..infinity) = (1)/(2)*Pi*coth((1)/(2)*Pi*a)-(1)/(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- x]*Divide[Sin[a*x],Sinh[x]], {x, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Coth[Divide[1,2]*Pi*a]-Divide[1,a]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/4.40.E8 4.40.E8] || [[Item:Q1980|<math>\int_{0}^{\infty}\frac{\sinh@{ax}}{\sinh@{\pi x}}\diff{x} = \tfrac{1}{2}\tan@{\tfrac{1}{2}a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\sinh@{ax}}{\sinh@{\pi x}}\diff{x} = \tfrac{1}{2}\tan@{\tfrac{1}{2}a}</syntaxhighlight> || <math>-\pi < a, a < \pi</math> || <syntaxhighlight lang=mathematica>int((sinh(a*x))/(sinh(Pi*x)), x = 0..infinity) = (1)/(2)*tan((1)/(2)*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Sinh[a*x],Sinh[Pi*x]], {x, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Tan[Divide[1,2]*a]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 6] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/4.40.E9 4.40.E9] || [[Item:Q1981|<math>\int_{-\infty}^{\infty}\frac{e^{ax}}{\left(\cosh@{\tfrac{1}{2}x}\right)^{2}}\diff{x} = \frac{4\pi a}{\sin@{\pi a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}\frac{e^{ax}}{\left(\cosh@{\tfrac{1}{2}x}\right)^{2}}\diff{x} = \frac{4\pi a}{\sin@{\pi a}}</syntaxhighlight> || <math>-1 < a, a < 1</math> || <syntaxhighlight lang=mathematica>int((exp(a*x))/((cosh((1)/(2)*x))^(2)), x = - infinity..infinity) = (4*Pi*a)/(sin(Pi*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[a*x],(Cosh[Divide[1,2]*x])^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Divide[4*Pi*a,Sin[Pi*a]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.40.E10 4.40.E10] || [[Item:Q1982|<math>\int_{0}^{\infty}\frac{\tanh@{ax}-\tanh@{bx}}{x}\diff{x} = \ln@{\frac{a}{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\tanh@{ax}-\tanh@{bx}}{x}\diff{x} = \ln@{\frac{a}{b}}</syntaxhighlight> || <math>a > 0, b > 0</math> || <syntaxhighlight lang=mathematica>int((tanh(a*x)- tanh(b*x))/(x), x = 0..infinity) = ln((a)/(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Tanh[a*x]- Tanh[b*x],x], {x, 0, Infinity}, GenerateConditions->None] == Log[Divide[a,b]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Skipped - Unable to analyze test case: Null || - || -
|-
| [https://dlmf.nist.gov/4.40.E11 4.40.E11] || [[Item:Q1983|<math>\int\asinh@@{x}\diff{x} = x\asinh@@{x}-(1+x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asinh@@{x}\diff{x} = x\asinh@@{x}-(1+x^{2})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(arcsinh(x), x) = x*arcsinh(x)-(1 + (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSinh[x], x, GenerateConditions->None] == x*ArcSinh[x]-(1 + (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E12 4.40.E12] || [[Item:Q1984|<math>\int\acosh@@{x}\diff{x} = x\acosh@@{x}-(x^{2}-1)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acosh@@{x}\diff{x} = x\acosh@@{x}-(x^{2}-1)^{1/2}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccosh(x), x) = x*arccosh(x)-((x)^(2)- 1)^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCosh[x], x, GenerateConditions->None] == x*ArcCosh[x]-((x)^(2)- 1)^(1/2)</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.40.E13 4.40.E13] || [[Item:Q1985|<math>\int\atanh@@{x}\diff{x} = x\atanh@@{x}+\tfrac{1}{2}\ln@{1-x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\atanh@@{x}\diff{x} = x\atanh@@{x}+\tfrac{1}{2}\ln@{1-x^{2}}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arctanh(x), x) = x*arctanh(x)+(1)/(2)*ln(1 - (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcTanh[x], x, GenerateConditions->None] == x*ArcTanh[x]+Divide[1,2]*Log[1 - (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.40.E14 4.40.E14] || [[Item:Q1986|<math>\int\acsch@@{x}\diff{x} = x\acsch@@{x}+\asinh@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acsch@@{x}\diff{x} = x\acsch@@{x}+\asinh@@{x}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccsch(x), x) = x*arccsch(x)+ arcsinh(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCsch[x], x, GenerateConditions->None] == x*ArcCsch[x]+ ArcSinh[x]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.40.E15 4.40.E15] || [[Item:Q1987|<math>\int\asech@@{x}\diff{x} = x\asech@@{x}+\asin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asech@@{x}\diff{x} = x\asech@@{x}+\asin@@{x}</syntaxhighlight> || <math>0 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arcsech(x), x) = x*arcsech(x)+ arcsin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSech[x], x, GenerateConditions->None] == x*ArcSech[x]+ ArcSin[x]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.570796327
Test Values: {x = .5}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.40.E16 4.40.E16] || [[Item:Q1988|<math>\int\acoth@@{x}\diff{x} = x\acoth@@{x}+\tfrac{1}{2}\ln@{x^{2}-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acoth@@{x}\diff{x} = x\acoth@@{x}+\tfrac{1}{2}\ln@{x^{2}-1}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccoth(x), x) = x*arccoth(x)+(1)/(2)*ln((x)^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCoth[x], x, GenerateConditions->None] == x*ArcCoth[x]+Divide[1,2]*Log[(x)^(2)- 1]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -1.5707963267948966]
Test Values: {Rule[x, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.42.E1 4.42.E1] || [[Item:Q1989|<math>\sin@@{A} = \frac{a}{c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{A} = \frac{a}{c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(A) = (a)/(c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[A] == Divide[a,c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1410196655+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.858980334+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.141019666+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.858980334+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.14101966569986213, 0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.8589803343001379, 0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E1 4.42.E1] || [[Item:Q1989|<math>\frac{a}{c} = \frac{1}{\csc@@{A}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{a}{c} = \frac{1}{\csc@@{A}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(a)/(c) = (1)/(csc(A))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[a,c] == Divide[1,Csc[A]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1410196654-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.858980335-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.141019665-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.858980335-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.14101966569986213, -0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.8589803343001379, -0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E2 4.42.E2] || [[Item:Q1990|<math>\cos@@{A} = \frac{b}{c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{A} = \frac{b}{c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(A) = (b)/(c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[A] == Divide[b,c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2694569811-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.730543019-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.269456981-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.730543019-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.2694569809427748, -0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.730543019057225, -0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E2 4.42.E2] || [[Item:Q1990|<math>\frac{b}{c} = \frac{1}{\sec@@{A}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{b}{c} = \frac{1}{\sec@@{A}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(b)/(c) = (1)/(sec(A))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[b,c] == Divide[1,Sec[A]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2694569810+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.730543019+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.269456981+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.730543019+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.2694569809427748, 0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.730543019057225, 0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E3 4.42.E3] || [[Item:Q1991|<math>\tan@@{A} = \frac{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{A} = \frac{a}{b}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(A) = (a)/(b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[A] == Divide[a,b]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2860691196+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.713930880+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.286069120+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.713930880+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.2860691197539781, 0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.7139308802460218, 0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E3 4.42.E3] || [[Item:Q1991|<math>\frac{a}{b} = \frac{1}{\cot@@{A}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{a}{b} = \frac{1}{\cot@@{A}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(a)/(b) = (1)/(cot(A))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[a,b] == Divide[1,Cot[A]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2860691196-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.713930880-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.286069120-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.713930880-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.2860691197539781, -0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.7139308802460218, -0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E4 4.42.E4] || [[Item:Q1992|<math>\frac{a}{\sin@@{A}} = \frac{b}{\sin@@{B}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{a}{\sin@@{A}} = \frac{b}{\sin@@{B}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(a)/(sin(A)) = (b)/(sin(B))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[a,Sin[A]] == Divide[b,Sin[B]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.025222791+1.188973104*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.008407597+.3963243680*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.016815194+.7926487360*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5042037985-.1981621840*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [290 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.3601096690692955, -0.4904383214455733]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.6651131226742772, 1.6794114261511237]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E4 4.42.E4] || [[Item:Q1992|<math>\frac{b}{\sin@@{B}} = \frac{c}{\sin@@{C}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{b}{\sin@@{B}} = \frac{c}{\sin@@{C}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(b)/(sin(B)) = (c)/(sin(C))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[b,Sin[B]] == Divide[c,Sin[C]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.025222791+1.188973104*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.008407597+.3963243680*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.016815194+.7926487360*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5042037985-.1981621840*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [290 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.3601096690692955, -0.4904383214455733]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.6651131226742772, 1.6794114261511237]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E5 4.42.E5] || [[Item:Q1993|<math>c^{2} = a^{2}+b^{2}-2ab\cos@@{C}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c^{2} = a^{2}+b^{2}-2ab\cos@@{C}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(c)^(2) = (a)^(2)+ (b)^(2)- 2*a*b*cos(C)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(c)^(2) == (a)^(2)+ (b)^(2)- 2*a*b*Cos[C]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.037443585-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.037443585-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.962556415-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.962556415-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.0374435857575133, -1.7862729760306462]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.274944825888497, 2.1108391932082666]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E6 4.42.E6] || [[Item:Q1994|<math>a = b\cos@@{C}+c\cos@@{B}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>a = b\cos@@{C}+c\cos@@{B}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>a = b*cos(C)+ c*cos(B)</syntaxhighlight> || <syntaxhighlight lang=mathematica>a == b*Cos[C]+ c*Cos[B]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .691629057-1.190848651*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.5
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.38913962e-1-.7938991006*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7694569811-.3969495503*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6916290571716757, -1.1908486506870974]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.4374628038820034, 0.10818873905920678]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E7 4.42.E7] || [[Item:Q1995|<math>\hbox{area} = \tfrac{1}{2}bc\sin@@{A}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hbox{area} = \tfrac{1}{2}bc\sin@@{A}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>a*r*exp(1)*a = (1)/(2)*b*c*sin(A)</syntaxhighlight> || <syntaxhighlight lang=mathematica>a*r*E*a == Divide[1,2]*b*c*Sin[A]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -10.14055405-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 8.207848294-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -4.024419932-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.091714180-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-10.140554047136932, -0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[r, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[8.207848294961623, -0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[r, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E7 4.42.E7] || [[Item:Q1995|<math>\tfrac{1}{2}bc\sin@@{A} = \left(s(s-a)(s-b)(s-c)\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}bc\sin@@{A} = \left(s(s-a)(s-b)(s-c)\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(2)*b*c*sin(A) = (s*(s - a)*(s - b)*(s - c))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*b*c*Sin[A] == (s*(s - a)*(s - b)*(s - c))^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9663528763+.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.397608155+.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9663528763-.3273107602*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.033647124+.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9663528760876551, 0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[s, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-5.397608154591272, 0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[s, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E8 4.42.E8] || [[Item:Q1996|<math>\cos@@{a} = \cos@@{b}\cos@@{c}+\sin@@{b}\sin@@{c}\cos@@{A}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{a} = \cos@@{b}\cos@@{c}+\sin@@{b}\sin@@{c}\cos@@{A}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(a) = cos(b)*cos(c)+ sin(b)*sin(c)*cos(A)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[a] == Cos[b]*Cos[c]+ Sin[b]*Sin[c]*Cos[A]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6611541130+.3949633133*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7926210130-.3949633133*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3407041550+.1898310285*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3580230890-.1898310285*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6611541132159315, 0.3949633132423481]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7926210131517828, -0.3949633132423481]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E9 4.42.E9] || [[Item:Q1997|<math>\frac{\sin@@{A}}{\sin@@{a}} = \frac{\sin@@{B}}{\sin@@{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@@{A}}{\sin@@{a}} = \frac{\sin@@{B}}{\sin@@{b}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(A))/(sin(a)) = (sin(B))/(sin(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[A],Sin[a]] == Divide[Sin[B],Sin[b]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.722274990-.6768885409*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9305491492+.3657244397*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.652824140-1.042612981*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .835262737e-1+.328274973e-1*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [286 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.5335532645785146, 0.5223487441958409]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.18872172594452297, -1.1992372855051223]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E9 4.42.E9] || [[Item:Q1997|<math>\frac{\sin@@{B}}{\sin@@{b}} = \frac{\sin@@{C}}{\sin@@{c}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@@{B}}{\sin@@{b}} = \frac{\sin@@{C}}{\sin@@{c}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(B))/(sin(b)) = (sin(C))/(sin(c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[B],Sin[b]] == Divide[Sin[C],Sin[c]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.722274990-.6768885409*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9305491492+.3657244397*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.652824140-1.042612981*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .835262737e-1+.328274973e-1*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [286 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.5335532645785146, 0.5223487441958409]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.18872172594452297, -1.1992372855051223]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E10 4.42.E10] || [[Item:Q1998|<math>\sin@@{a}\cos@@{B} = \cos@@{b}\sin@@{c}-\sin@@{b}\cos@@{c}\cos@@{A}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{a}\cos@@{B} = \cos@@{b}\sin@@{c}-\sin@@{b}\cos@@{c}\cos@@{A}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(a)*cos(B) = cos(b)*sin(c)- sin(b)*cos(c)*cos(A)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[a]*Cos[B] == Cos[b]*Sin[c]- Sin[b]*Cos[c]*Cos[A]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.7097001135+.4239639484*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8508201215+.4239639484*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.334305598+.7434385530*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.402132040+.7434385530*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.7097001133469564, 0.4239639481520351]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8508201214068235, 0.4239639481520351]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E11 4.42.E11] || [[Item:Q1999|<math>\cos@@{a}\cos@@{C} = \sin@@{a}\cot@@{b}-\sin@@{C}\cot@@{B}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{a}\cos@@{C} = \sin@@{a}\cot@@{b}-\sin@@{C}\cot@@{B}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(a)*cos(C) = sin(a)*cot(b)- sin(C)*cot(B)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[a]*Cos[C] == Sin[a]*Cot[b]- Sin[C]*Cot[B]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7114823860-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8529567893-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.043682738-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.608121914-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7114823862555057, -0.42502865061548756]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.21981752916457492, 0.9933277802647092]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.42.E12 4.42.E12] || [[Item:Q2000|<math>\cos@@{A} = -\cos@@{B}\cos@@{C}+\sin@@{B}\sin@@{C}\cos@@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{A} = -\cos@@{B}\cos@@{C}+\sin@@{B}\sin@@{C}\cos@@{a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(A) = - cos(B)*cos(C)+ sin(B)*sin(C)*cos(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[A] == - Cos[B]*Cos[C]+ Sin[B]*Sin[C]*Cos[a]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.062535945-1.017952978*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.062535945-1.017952978*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5591646152-1.485905089*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5591646152-1.485905089*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.0625359450203713, -1.017952977441946]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.8749374794081675, -0.5777856599721184]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.43#Ex1 4.43#Ex1] || [[Item:Q2001|<math>A = \left(-\tfrac{4}{3}p\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A = \left(-\tfrac{4}{3}p\right)^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A = (-(4)/(3)*p)^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A == (-Divide[4,3]*p)^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.43#Ex2 4.43#Ex2] || [[Item:Q2002|<math>B = \left(\tfrac{4}{3}p\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B = \left(\tfrac{4}{3}p\right)^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">B = ((4)/(3)*p)^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">B == (Divide[4,3]*p)^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.43.E2 4.43.E2] || [[Item:Q2003|<math>z^{3}+pz+q = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z^{3}+pz+q = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(z)^(3)+ p*z + q = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(z)^(3)+ p*z + q == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45.E1 4.45.E1] || [[Item:Q2004|<math>y = x^{2^{-m}}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>y = x^{2^{-m}}-1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">y = (x)^((2)^(- m))- 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">y == (x)^((2)^(- m))- 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.45.E2 4.45.E2] || [[Item:Q2005|<math>\ln@@{x} = 2^{m}\ln@{1+y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{x} = 2^{m}\ln@{1+y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(x) = (2)^(m)* ln(1 + y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x] == (2)^(m)* Log[1 + y]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [54 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.791759469-6.283185308*I
Test Values: {x = 1.5, y = -1.5, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.178053830-12.56637062*I
Test Values: {x = 1.5, y = -1.5, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 5.950642553-25.13274123*I
Test Values: {x = 1.5, y = -1.5, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.427116356
Test Values: {x = 1.5, y = 1.5, m = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [54 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.791759469228055, -6.283185307179586]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.1780538303479453, -12.566370614359172]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.45.E3 4.45.E3] || [[Item:Q2006|<math>\ln@@{x} = \ln@@{\xi}+m\ln@@{10}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{x} = \ln@@{\xi}+m\ln@@{10}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(x) = ln(xi)+ m*ln(10)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x] == Log[\[Xi]]+ m*Log[10]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.897119985-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -4.199705078-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.502290171-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.897119985-2.094395102*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2), m = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.8971199848858815, -0.5235987755982988]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.199705077879927, -0.5235987755982988]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.45#Ex1 4.45#Ex1] || [[Item:Q2007|<math>m = \floor{\frac{x}{\ln@@{10}}+\frac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>m = \floor{\frac{x}{\ln@@{10}}+\frac{1}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>m = floor((x)/(ln(10))+(1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>m == Floor[Divide[x,Log[10]]+Divide[1,2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.
Test Values: {x = 1.5, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.
Test Values: {x = 1.5, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.
Test Values: {x = .5, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.
Test Values: {x = .5, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.0
Test Values: {Rule[m, 2], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.0
Test Values: {Rule[m, 3], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.45#Ex2 4.45#Ex2] || [[Item:Q2008|<math>y = x-m\ln@@{10}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>y = x-m\ln@@{10}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>y = x - m*ln(10)</syntaxhighlight> || <syntaxhighlight lang=mathematica>y == x - m*Log[10]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [54 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.697414907
Test Values: {x = 1.5, y = -1.5, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.605170186
Test Values: {x = 1.5, y = -1.5, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.907755279
Test Values: {x = 1.5, y = -1.5, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.302585093
Test Values: {x = 1.5, y = 1.5, m = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [54 / 54]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -0.6974149070059541
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.6051701859880918
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45.E5 4.45.E5] || [[Item:Q2009|<math>e^{x} = 10^{m}e^{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{x} = 10^{m}e^{y}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(x) = (10)^(m)* exp(y)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[x] == (10)^(m)* Exp[y]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.45#Ex3 4.45#Ex3] || [[Item:Q2010|<math>m = \floor{\xi+\tfrac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>m = \floor{\xi+\tfrac{1}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>m = floor(xi +(1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>m == Floor[\[Xi]+Divide[1,2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [26 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.
Test Values: {xi = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.
Test Values: {xi = 1/2*3^(1/2)+1/2*I, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.
Test Values: {xi = -1/2+1/2*I*3^(1/2), m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.
Test Values: {xi = -1/2+1/2*I*3^(1/2), m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [26 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.0
Test Values: {Rule[m, 2], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.0
Test Values: {Rule[m, 3], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45#Ex4 4.45#Ex4] || [[Item:Q2011|<math>\theta = \pi(\xi-m)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\theta = \pi(\xi-m)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">theta = Pi*(xi - m)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Theta] == Pi*(\[Xi]- m)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.45#Ex5 4.45#Ex5] || [[Item:Q2012|<math>\sin@@{x} = (-1)^{m}\sin@@{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{x} = (-1)^{m}\sin@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(x) = (- 1)^(m)* sin(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x] == (- 1)^(m)* Sin[\[Theta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [81 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.856475321+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1385146521-.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.856475321+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.338405873+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = .5, m = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [81 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.8564753209041922, 0.33759646322287]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.13851465230391657, -0.33759646322287]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.45#Ex6 4.45#Ex6] || [[Item:Q2013|<math>\cos@@{x} = (-1)^{m}\cos@@{\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{x} = (-1)^{m}\cos@@{\theta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x) = (- 1)^(m)* cos(theta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x] == (- 1)^(m)* Cos[\[Theta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [84 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8012802206-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6598058172+.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8012802206-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.608125581-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = .5, m = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [84 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8012802207249281, -0.3969495502290325]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.6598058173895223, 0.3969495502290325]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.45.E8 4.45.E8] || [[Item:Q2014|<math>2\atan@@{\frac{x}{1+(1+x^{2})^{1/2}}} = \atan@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\atan@@{\frac{x}{1+(1+x^{2})^{1/2}}} = \atan@@{x}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>2*arctan((x)/(1 +(1 + (x)^(2))^(1/2))) = arctan(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*ArcTan[Divide[x,1 +(1 + (x)^(2))^(1/2)]] == ArcTan[x]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45.E9 4.45.E9] || [[Item:Q2015|<math>x_{n} = \frac{x_{n-1}}{1+(1+x^{2}_{n-1})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{n} = \frac{x_{n-1}}{1+(1+x^{2}_{n-1})^{1/2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[n] = (x[n - 1])/(1 +(1 + (x[n - 1])^(2))^(1/2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, n] == Divide[Subscript[x, n - 1],1 +(1 + (Subscript[x, n - 1])^(2))^(1/2)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.45.E10 4.45.E10] || [[Item:Q2016|<math>\atan@@{x} = 2^{n}\atan@@{x_{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@@{x} = 2^{n}\atan@@{x_{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(x) = (2)^(n)* arctan(x[n])</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[x] == (2)^(n)* ArcTan[Subscript[x, n]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5880026038-.5493061442*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.158798931-1.098612288*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.300391585-2.197224577*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.553590050-1.316957897*I
Test Values: {x = 1.5, x[n] = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5880026035475677, -0.5493061443340551]
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[Subscript[x, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.1587989303424644, -1.0986122886681102]
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[Subscript[x, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45#Ex7 4.45#Ex7] || [[Item:Q2018|<math>x_{1} = 0.90000\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{1} = 0.90000\dots</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[1] = 0.90000</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 1] == 0.90000</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45#Ex8 4.45#Ex8] || [[Item:Q2019|<math>x_{2} = 0.38373\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{2} = 0.38373\dots</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[2] = 0.38373</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 2] == 0.38373</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45#Ex9 4.45#Ex9] || [[Item:Q2020|<math>x_{3} = 0.18528\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{3} = 0.18528\dots</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[3] = 0.18528</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 3] == 0.18528</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.45#Ex10 4.45#Ex10] || [[Item:Q2021|<math>x_{4} = 0.09185\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{4} = 0.09185\dots</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[4] = 0.09185</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 4] == 0.09185</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.45.E13 4.45.E13] || [[Item:Q2022|<math>\atan@@{x} = 16\atan@@{x_{4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@@{x} = 16\atan@@{x_{4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(x) = 16*arctan(x[4])</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[x] == 16*ArcTan[Subscript[x, 4]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -11.58357690-4.394449154*I
Test Values: {x = 1.5, x[4] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 13.54916434-10.53566318*I
Test Values: {x = 1.5, x[4] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -11.58357690+10.53566318*I
Test Values: {x = 1.5, x[4] = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 13.54916434+4.394449154*I
Test Values: {x = 1.5, x[4] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-11.583576891111845, -4.394449154672441]
Test Values: {Rule[x, 1.5], Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[13.549164337606502, -10.535663175398536]
Test Values: {Rule[x, 1.5], Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.45.E13 4.45.E13] || [[Item:Q2022|<math>16\atan@@{x_{4}} = 1.46563\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>16\atan@@{x_{4}} = 1.46563\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>16*arctan(x[4]) = 1.46563</syntaxhighlight> || <syntaxhighlight lang=mathematica>16*ArcTan[Subscript[x, 4]] == 1.46563</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 11.10074062+4.394449154*I
Test Values: {x[4] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -14.03200062+10.53566318*I
Test Values: {x[4] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 11.10074062-10.53566318*I
Test Values: {x[4] = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -14.03200062-4.394449154*I
Test Values: {x[4] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[11.100740614359175, 4.394449154672441]
Test Values: {Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-14.032000614359173, 10.535663175398536]
Test Values: {Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.45.E15 4.45.E15] || [[Item:Q2024|<math>\ln@@{z} = \ln@@{|z|}+i\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{|z|}+i\phase@@{z}</syntaxhighlight> || <math>-\pi \leq \phase@@{z}, \phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.45.E16 4.45.E16] || [[Item:Q2025|<math>e^{z} = e^{\realpart@@{z}}(\cos@{\imagpart@@{z}}+i\sin@{\imagpart@@{z}})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = e^{\realpart@@{z}}(\cos@{\imagpart@@{z}}+i\sin@{\imagpart@@{z}})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = exp(Re(z))*(cos(Im(z))+ I*sin(Im(z)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == Exp[Re[z]]*(Cos[Im[z]]+ I*Sin[Im[z]])</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|}
</div>

Latest revision as of 12:33, 22 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.24.E2 arccos z = ( 2 ( 1 - z ) ) 1 / 2 ( 1 + n = 1 1 3 5 ( 2 n - 1 ) 2 2 n ( 2 n + 1 ) n ! ( 1 - z ) n ) 𝑧 superscript 2 1 𝑧 1 2 1 superscript subscript 𝑛 1 1 3 5 2 𝑛 1 superscript 2 2 𝑛 2 𝑛 1 𝑛 superscript 1 𝑧 𝑛 {\displaystyle{\displaystyle\operatorname{arccos}z=(2(1-z))^{1/2}\*\left(1+% \sum_{n=1}^{\infty}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}(2n+1)n!}(1-z)^{n}% \right)}}
\acos@@{z} = (2(1-z))^{1/2}\*\left(1+\sum_{n=1}^{\infty}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}(2n+1)n!}(1-z)^{n}\right)
| 1 - z | 2 1 𝑧 2 {\displaystyle{\displaystyle|1-z|\leq 2}}
arccos(z) = (2*(1 - z))^(1/2)*(1 + sum((1 * 3 * 5*(2*n - 1))/((2)^(2*n)*(2*n + 1)*factorial(n))*(1 - z)^(n), n = 1..infinity))
ArcCos[z] == (2*(1 - z))^(1/2)*(1 + Sum[Divide[1 * 3 * 5*(2*n - 1),(2)^(2*n)*(2*n + 1)*(n)!]*(1 - z)^(n), {n, 1, Infinity}, GenerateConditions->None])
Failure Failure
Failed [7 / 7]
Result: .3065228369+.5552108774*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -3.012742443+4.300365362*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .3498215011-1.819822265*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: -5.876013992-3.037981862*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.3065228364484756, 0.5552108781095243]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-3.0127424460165777, 4.300365361528893]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.24.E6 x 2 - y 2 = - 1 2 superscript 𝑥 2 superscript 𝑦 2 1 2 {\displaystyle{\displaystyle x^{2}-y^{2}=-\tfrac{1}{2}}}
x^{2}-y^{2} = -\tfrac{1}{2}

(x)^(2)- (y)^(2) = -(1)/(2)
(x)^(2)- (y)^(2) == -Divide[1,2]
Skipped - no semantic math Skipped - no semantic math - -
4.24.E7 d d z arcsin z = ( 1 - z 2 ) - 1 / 2 derivative 𝑧 𝑧 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arcsin% }z=(1-z^{2})^{-1/2}}}
\deriv{}{z}\asin@@{z} = (1-z^{2})^{-1/2}

diff(arcsin(z), z) = (1 - (z)^(2))^(- 1/2)
D[ArcSin[z], z] == (1 - (z)^(2))^(- 1/2)
Successful Successful - Successful [Tested: 7]
4.24.E8 d d z arccos z = - ( 1 - z 2 ) - 1 / 2 derivative 𝑧 𝑧 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arccos% }z=-(1-z^{2})^{-1/2}}}
\deriv{}{z}\acos@@{z} = -(1-z^{2})^{-1/2}

diff(arccos(z), z) = -(1 - (z)^(2))^(- 1/2)
D[ArcCos[z], z] == -(1 - (z)^(2))^(- 1/2)
Successful Successful - Successful [Tested: 7]
4.24.E9 d d z arctan z = 1 1 + z 2 derivative 𝑧 𝑧 1 1 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arctan% }z=\frac{1}{1+z^{2}}}}
\deriv{}{z}\atan@@{z} = \frac{1}{1+z^{2}}

diff(arctan(z), z) = (1)/(1 + (z)^(2))
D[ArcTan[z], z] == Divide[1,1 + (z)^(2)]
Successful Successful - Successful [Tested: 7]
4.24.E10 d d z arccsc z = - 1 z ( z 2 - 1 ) 1 / 2 derivative 𝑧 𝑧 1 𝑧 superscript superscript 𝑧 2 1 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arccsc% }z=-\frac{1}{z(z^{2}-1)^{1/2}}}}
\deriv{}{z}\acsc@@{z} = -\frac{1}{z(z^{2}-1)^{1/2}}

diff(arccsc(z), z) = -(1)/(z*((z)^(2)- 1)^(1/2))
D[ArcCsc[z], z] == -Divide[1,z*((z)^(2)- 1)^(1/2)]
Failure Failure
Failed [2 / 7]
Result: 1.074569932-1.074569932*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: -.6696152420e-9+2.000000000*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

Successful [Tested: 1]
4.24.E10 d d z arccsc z = + 1 z ( z 2 - 1 ) 1 / 2 derivative 𝑧 𝑧 1 𝑧 superscript superscript 𝑧 2 1 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arccsc% }z=+\frac{1}{z(z^{2}-1)^{1/2}}}}
\deriv{}{z}\acsc@@{z} = +\frac{1}{z(z^{2}-1)^{1/2}}

diff(arccsc(z), z) = +(1)/(z*((z)^(2)- 1)^(1/2))
D[ArcCsc[z], z] == +Divide[1,z*((z)^(2)- 1)^(1/2)]
Failure Failure
Failed [5 / 7]
Result: -.6696152420e-9+2.000000000*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}

Result: 1.074569932-1.074569932*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}

Result: -1.192569588
Test Values: {z = 1.5, z = 1/2}

Result: 4.618802153*I
Test Values: {z = .5, z = 1/2}

... skip entries to safe data
Failed [1 / 1]
Result: Complex[0.0, 4.618802153517007]
Test Values: {Rule[z, Rational[1, 2]]}

4.24.E11 d d z arcsec z = + 1 z ( z 2 - 1 ) 1 / 2 derivative 𝑧 𝑧 1 𝑧 superscript superscript 𝑧 2 1 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arcsec% }z=+\frac{1}{z(z^{2}-1)^{1/2}}}}
\deriv{}{z}\asec@@{z} = +\frac{1}{z(z^{2}-1)^{1/2}}

diff(arcsec(z), z) = +(1)/(z*((z)^(2)- 1)^(1/2))
D[ArcSec[z], z] == +Divide[1,z*((z)^(2)- 1)^(1/2)]
Failure Failure
Failed [2 / 7]
Result: -1.074569932+1.074569932*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: .6696152420e-9-2.000000000*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

Successful [Tested: 1]
4.24.E11 d d z arcsec z = - 1 z ( z 2 - 1 ) 1 / 2 derivative 𝑧 𝑧 1 𝑧 superscript superscript 𝑧 2 1 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arcsec% }z=-\frac{1}{z(z^{2}-1)^{1/2}}}}
\deriv{}{z}\asec@@{z} = -\frac{1}{z(z^{2}-1)^{1/2}}

diff(arcsec(z), z) = -(1)/(z*((z)^(2)- 1)^(1/2))
D[ArcSec[z], z] == -Divide[1,z*((z)^(2)- 1)^(1/2)]
Failure Failure
Failed [5 / 7]
Result: .6696152420e-9-2.000000000*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}

Result: -1.074569932+1.074569932*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}

Result: 1.192569588
Test Values: {z = 1.5, z = 1/2}

Result: -4.618802153*I
Test Values: {z = .5, z = 1/2}

... skip entries to safe data
Failed [1 / 1]
Result: Complex[0.0, -4.618802153517007]
Test Values: {Rule[z, Rational[1, 2]]}

4.24.E12 d d z arccot z = - 1 1 + z 2 derivative 𝑧 𝑧 1 1 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{arccot% }z=-\frac{1}{1+z^{2}}}}
\deriv{}{z}\acot@@{z} = -\frac{1}{1+z^{2}}

diff(arccot(z), z) = -(1)/(1 + (z)^(2))
D[ArcCot[z], z] == -Divide[1,1 + (z)^(2)]
Successful Successful - Successful [Tested: 7]
4.24.E13 Arcsin u + Arcsin v = Arcsin ( u ( 1 - v 2 ) 1 / 2 + v ( 1 - u 2 ) 1 / 2 ) multivalued-inverse-sine 𝑢 multivalued-inverse-sine 𝑣 multivalued-inverse-sine 𝑢 superscript 1 superscript 𝑣 2 1 2 𝑣 superscript 1 superscript 𝑢 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}u+\operatorname{Arcsin}v=% \operatorname{Arcsin}\left(u(1-v^{2})^{1/2}+v(1-u^{2})^{1/2}\right)}}
\Asin@@{u}+\Asin@@{v} = \Asin@{u(1-v^{2})^{1/2}+ v(1-u^{2})^{1/2}}

Error
ArcSin[u]+ ArcSin[v] == ArcSin[u*(1 - (v)^(2))^(1/2)+ v*(1 - (u)^(2))^(1/2)]
Missing Macro Error Failure -
Failed [34 / 100]
Result: Complex[4.440892098500626*^-16, 2.633915793849633]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.5707963267948966, -0.6078894033135972]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, 1.5]}

... skip entries to safe data
4.24.E13 Arcsin u - Arcsin v = Arcsin ( u ( 1 - v 2 ) 1 / 2 - v ( 1 - u 2 ) 1 / 2 ) multivalued-inverse-sine 𝑢 multivalued-inverse-sine 𝑣 multivalued-inverse-sine 𝑢 superscript 1 superscript 𝑣 2 1 2 𝑣 superscript 1 superscript 𝑢 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}u-\operatorname{Arcsin}v=% \operatorname{Arcsin}\left(u(1-v^{2})^{1/2}-v(1-u^{2})^{1/2}\right)}}
\Asin@@{u}-\Asin@@{v} = \Asin@{u(1-v^{2})^{1/2}- v(1-u^{2})^{1/2}}

Error
ArcSin[u]- ArcSin[v] == ArcSin[u*(1 - (v)^(2))^(1/2)- v*(1 - (u)^(2))^(1/2)]
Missing Macro Error Failure -
Failed [34 / 100]
Result: Complex[4.440892098500626*^-16, 2.633915793849633]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[1.5707963267948966, -0.6078894033135972]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -1.5]}

... skip entries to safe data
4.24.E14 Arccos u + Arccos v = Arccos ( u v - ( ( 1 - u 2 ) ( 1 - v 2 ) ) 1 / 2 ) multivalued-inverse-cosine 𝑢 multivalued-inverse-cosine 𝑣 multivalued-inverse-cosine 𝑢 𝑣 superscript 1 superscript 𝑢 2 1 superscript 𝑣 2 1 2 {\displaystyle{\displaystyle\operatorname{Arccos}u+\operatorname{Arccos}v=% \operatorname{Arccos}\left(uv-((1-u^{2})(1-v^{2}))^{1/2}\right)}}
\Acos@@{u}+\Acos@@{v} = \Acos@{uv-((1-u^{2})(1-v^{2}))^{1/2}}

Error
ArcCos[u]+ ArcCos[v] == ArcCos[u*v -((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]
Missing Macro Error Failure -
Failed [63 / 100]
Result: Complex[1.5707963267948963, -3.2418051971632305]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -1.5]}

Result: Complex[1.5707963267948966, -3.9508736907744497]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -2]}

... skip entries to safe data
4.24.E14 Arccos u - Arccos v = Arccos ( u v + ( ( 1 - u 2 ) ( 1 - v 2 ) ) 1 / 2 ) multivalued-inverse-cosine 𝑢 multivalued-inverse-cosine 𝑣 multivalued-inverse-cosine 𝑢 𝑣 superscript 1 superscript 𝑢 2 1 superscript 𝑣 2 1 2 {\displaystyle{\displaystyle\operatorname{Arccos}u-\operatorname{Arccos}v=% \operatorname{Arccos}\left(uv+((1-u^{2})(1-v^{2}))^{1/2}\right)}}
\Acos@@{u}-\Acos@@{v} = \Acos@{uv+((1-u^{2})(1-v^{2}))^{1/2}}

Error
ArcCos[u]- ArcCos[v] == ArcCos[u*v +((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]
Missing Macro Error Failure -
Failed [63 / 100]
Result: Complex[-2.3202651922123767, 0.3459279941338042]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8213274613774166, -2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.24.E15 Arctan u + Arctan v = Arctan ( u + v 1 - u v ) multivalued-inverse-tangent 𝑢 multivalued-inverse-tangent 𝑣 multivalued-inverse-tangent 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\operatorname{Arctan}u+\operatorname{Arctan}v=% \operatorname{Arctan}\left(\frac{u+v}{1-uv}\right)}}
\Atan@@{u}+\Atan@@{v} = \Atan@{\frac{u+ v}{1- uv}}

Error
ArcTan[u]+ ArcTan[v] == ArcTan[Divide[u + v,1 - u*v]]
Missing Macro Error Failure - Successful [Tested: 1]
4.24.E15 Arctan u - Arctan v = Arctan ( u - v 1 + u v ) multivalued-inverse-tangent 𝑢 multivalued-inverse-tangent 𝑣 multivalued-inverse-tangent 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\operatorname{Arctan}u-\operatorname{Arctan}v=% \operatorname{Arctan}\left(\frac{u-v}{1+uv}\right)}}
\Atan@@{u}-\Atan@@{v} = \Atan@{\frac{u- v}{1+ uv}}

Error
ArcTan[u]- ArcTan[v] == ArcTan[Divide[u - v,1 + u*v]]
Missing Macro Error Failure - Successful [Tested: 1]
4.24.E16 Arcsin u + Arccos v = Arcsin ( u v + ( ( 1 - u 2 ) ( 1 - v 2 ) ) 1 / 2 ) multivalued-inverse-sine 𝑢 multivalued-inverse-cosine 𝑣 multivalued-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 1 superscript 𝑣 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}u+\operatorname{Arccos}v=% \operatorname{Arcsin}\left(uv+((1-u^{2})(1-v^{2}))^{1/2}\right)}}
\Asin@@{u}+\Acos@@{v} = \Asin@{uv+((1-u^{2})(1-v^{2}))^{1/2}}

Error
ArcSin[u]+ ArcCos[v] == ArcSin[u*v +((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]
Missing Macro Error Failure -
Failed [63 / 100]
Result: Complex[2.3202651922123767, -0.3459279941338042]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.8213274613774166, 2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.24.E16 Arcsin u - Arccos v = Arcsin ( u v - ( ( 1 - u 2 ) ( 1 - v 2 ) ) 1 / 2 ) multivalued-inverse-sine 𝑢 multivalued-inverse-cosine 𝑣 multivalued-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 1 superscript 𝑣 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}u-\operatorname{Arccos}v=% \operatorname{Arcsin}\left(uv-((1-u^{2})(1-v^{2}))^{1/2}\right)}}
\Asin@@{u}-\Acos@@{v} = \Asin@{uv-((1-u^{2})(1-v^{2}))^{1/2}}

Error
ArcSin[u]- ArcCos[v] == ArcSin[u*v -((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)]
Missing Macro Error Failure -
Failed [63 / 100]
Result: Complex[-1.5707963267948963, 3.2418051971632305]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -1.5]}

Result: Complex[-1.5707963267948966, 3.9508736907744497]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -2]}

... skip entries to safe data
4.24.E16 Arcsin ( u v + ( ( 1 - u 2 ) ( 1 - v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 - u 2 ) 1 / 2 - u ( 1 - v 2 ) 1 / 2 ) multivalued-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 1 superscript 𝑣 2 1 2 multivalued-inverse-cosine 𝑣 superscript 1 superscript 𝑢 2 1 2 𝑢 superscript 1 superscript 𝑣 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}\left(uv+((1-u^{2})(1-v^{2}))% ^{1/2}\right)=\operatorname{Arccos}\left(v(1-u^{2})^{1/2}-u(1-v^{2})^{1/2}% \right)}}
\Asin@{uv+((1-u^{2})(1-v^{2}))^{1/2}} = \Acos@{v(1-u^{2})^{1/2}- u(1-v^{2})^{1/2}}

Error
ArcSin[u*v +((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)] == ArcCos[v*(1 - (u)^(2))^(1/2)- u*(1 - (v)^(2))^(1/2)]
Missing Macro Error Failure -
Failed [72 / 100]
Result: Complex[-2.3202651922123763, 0.3459279941338042]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8213274613774164, -2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.24.E16 Arcsin ( u v - ( ( 1 - u 2 ) ( 1 - v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 - u 2 ) 1 / 2 + u ( 1 - v 2 ) 1 / 2 ) multivalued-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 1 superscript 𝑣 2 1 2 multivalued-inverse-cosine 𝑣 superscript 1 superscript 𝑢 2 1 2 𝑢 superscript 1 superscript 𝑣 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}\left(uv-((1-u^{2})(1-v^{2}))% ^{1/2}\right)=\operatorname{Arccos}\left(v(1-u^{2})^{1/2}+u(1-v^{2})^{1/2}% \right)}}
\Asin@{uv-((1-u^{2})(1-v^{2}))^{1/2}} = \Acos@{v(1-u^{2})^{1/2}+ u(1-v^{2})^{1/2}}

Error
ArcSin[u*v -((1 - (u)^(2))*(1 - (v)^(2)))^(1/2)] == ArcCos[v*(1 - (u)^(2))^(1/2)+ u*(1 - (v)^(2))^(1/2)]
Missing Macro Error Failure -
Failed [91 / 100]
Result: Complex[-2.3202651922123767, 2.979843787983438]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8213274613774161, -0.3459279941338048]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.24.E17 Arctan u + Arccot v = Arctan ( u v + 1 v - u ) multivalued-inverse-tangent 𝑢 multivalued-inverse-cotangent 𝑣 multivalued-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 {\displaystyle{\displaystyle\operatorname{Arctan}u+\operatorname{Arccot}v=% \operatorname{Arctan}\left(\frac{uv+1}{v-u}\right)}}
\Atan@@{u}+\Acot@@{v} = \Atan@{\frac{uv+ 1}{v- u}}

Error
ArcTan[u]+ ArcCot[v] == ArcTan[Divide[u*v + 1,v - u]]
Missing Macro Error Failure -
Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, 0.5]}

4.24.E17 Arctan u - Arccot v = Arctan ( u v - 1 v + u ) multivalued-inverse-tangent 𝑢 multivalued-inverse-cotangent 𝑣 multivalued-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 {\displaystyle{\displaystyle\operatorname{Arctan}u-\operatorname{Arccot}v=% \operatorname{Arctan}\left(\frac{uv-1}{v+u}\right)}}
\Atan@@{u}-\Acot@@{v} = \Atan@{\frac{uv- 1}{v+ u}}

Error
ArcTan[u]- ArcCot[v] == ArcTan[Divide[u*v - 1,v + u]]
Missing Macro Error Failure -
Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, -0.5]}

4.24.E17 Arctan ( u v + 1 v - u ) = Arccot ( v - u u v + 1 ) multivalued-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 multivalued-inverse-cotangent 𝑣 𝑢 𝑢 𝑣 1 {\displaystyle{\displaystyle\operatorname{Arctan}\left(\frac{uv+1}{v-u}\right)% =\operatorname{Arccot}\left(\frac{v-u}{uv+1}\right)}}
\Atan@{\frac{uv+ 1}{v- u}} = \Acot@{\frac{v- u}{uv+ 1}}

Error
ArcTan[Divide[u*v + 1,v - u]] == ArcCot[Divide[v - u,u*v + 1]]
Missing Macro Error Failure -
Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, 0.5]}

4.24.E17 Arctan ( u v - 1 v + u ) = Arccot ( v + u u v - 1 ) multivalued-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 multivalued-inverse-cotangent 𝑣 𝑢 𝑢 𝑣 1 {\displaystyle{\displaystyle\operatorname{Arctan}\left(\frac{uv-1}{v+u}\right)% =\operatorname{Arccot}\left(\frac{v+u}{uv-1}\right)}}
\Atan@{\frac{uv- 1}{v+ u}} = \Acot@{\frac{v+ u}{uv- 1}}

Error
ArcTan[Divide[u*v - 1,v + u]] == ArcCot[Divide[v + u,u*v - 1]]
Missing Macro Error Failure -
Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, -0.5]}

4.26.E1 sin x d x = - cos x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\sin x\mathrm{d}x=-\cos x}}
\int\sin@@{x}\diff{x} = -\cos@@{x}

int(sin(x), x) = - cos(x)
Integrate[Sin[x], x, GenerateConditions->None] == - Cos[x]
Successful Successful - Successful [Tested: 3]
4.26.E2 cos x d x = sin x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\cos x\mathrm{d}x=\sin x}}
\int\cos@@{x}\diff{x} = \sin@@{x}

int(cos(x), x) = sin(x)
Integrate[Cos[x], x, GenerateConditions->None] == Sin[x]
Successful Successful - Successful [Tested: 3]
4.26.E3 tan x d x = - ln ( cos x ) 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\tan x\mathrm{d}x=-\ln\left(\cos x\right)}}
\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi<x,x<\tfrac{1}{2}\pi}}
int(tan(x), x) = - ln(cos(x))
Integrate[Tan[x], x, GenerateConditions->None] == - Log[Cos[x]]
Successful Successful - Successful [Tested: 2]
4.26.E4 csc x d x = ln ( tan 1 2 x ) 𝑥 𝑥 1 2 𝑥 {\displaystyle{\displaystyle\int\csc x\mathrm{d}x=\ln\left(\tan\tfrac{1}{2}x% \right)}}
\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}
0 < x , x < π formulae-sequence 0 𝑥 𝑥 𝜋 {\displaystyle{\displaystyle 0<x,x<\pi}}
int(csc(x), x) = ln(tan((1)/(2)*x))
Integrate[Csc[x], x, GenerateConditions->None] == Log[Tan[Divide[1,2]*x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.26.E5 sec x d x = gd - 1 ( x ) 𝑥 𝑥 inverse-Gudermannian 𝑥 {\displaystyle{\displaystyle\int\sec x\mathrm{d}x={\operatorname{gd}^{-1}}% \left(x\right)}}
\int\sec@@{x}\diff{x} = \aGudermannian@{x}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
int(sec(x), x) = arctanh(sin(x))
Integrate[Sec[x], x, GenerateConditions->None] == InverseGudermannian[x]
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.26.E6 cot x d x = ln ( sin x ) 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\cot x\mathrm{d}x=\ln\left(\sin x\right)}}
\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}
0 < x , x < π formulae-sequence 0 𝑥 𝑥 𝜋 {\displaystyle{\displaystyle 0<x,x<\pi}}
int(cot(x), x) = ln(sin(x))
Integrate[Cot[x], x, GenerateConditions->None] == Log[Sin[x]]
Successful Successful - Successful [Tested: 3]
4.26.E7 e a x sin ( b x ) d x = e a x a 2 + b 2 ( a sin ( b x ) - b cos ( b x ) ) superscript 𝑒 𝑎 𝑥 𝑏 𝑥 𝑥 superscript 𝑒 𝑎 𝑥 superscript 𝑎 2 superscript 𝑏 2 𝑎 𝑏 𝑥 𝑏 𝑏 𝑥 {\displaystyle{\displaystyle\int e^{ax}\sin\left(bx\right)\mathrm{d}x=\frac{e^% {ax}}{a^{2}+b^{2}}(a\sin\left(bx\right)-b\cos\left(bx\right))}}
\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})

int(exp(a*x)*sin(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*sin(b*x)- b*cos(b*x))
Integrate[Exp[a*x]*Sin[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Sin[b*x]- b*Cos[b*x])
Successful Successful - Successful [Tested: 108]
4.26.E8 e a x cos ( b x ) d x = e a x a 2 + b 2 ( a cos ( b x ) + b sin ( b x ) ) superscript 𝑒 𝑎 𝑥 𝑏 𝑥 𝑥 superscript 𝑒 𝑎 𝑥 superscript 𝑎 2 superscript 𝑏 2 𝑎 𝑏 𝑥 𝑏 𝑏 𝑥 {\displaystyle{\displaystyle\int e^{ax}\cos\left(bx\right)\mathrm{d}x=\frac{e^% {ax}}{a^{2}+b^{2}}(a\cos\left(bx\right)+b\sin\left(bx\right))}}
\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})

int(exp(a*x)*cos(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*cos(b*x)+ b*sin(b*x))
Integrate[Exp[a*x]*Cos[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Cos[b*x]+ b*Sin[b*x])
Successful Successful - Successful [Tested: 108]
4.26.E9 0 π sin ( m t ) sin ( n t ) d t = 0 superscript subscript 0 𝜋 𝑚 𝑡 𝑛 𝑡 𝑡 0 {\displaystyle{\displaystyle\int_{0}^{\pi}\sin\left(mt\right)\sin\left(nt% \right)\mathrm{d}t=0}}
\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0
m n 𝑚 𝑛 {\displaystyle{\displaystyle m\neq n}}
int(sin(m*t)*sin(n*t), t = 0..Pi) = 0
Integrate[Sin[m*t]*Sin[n*t], {t, 0, Pi}, GenerateConditions->None] == 0
Successful Failure - Successful [Tested: 6]
4.26.E10 0 π cos ( m t ) cos ( n t ) d t = 0 superscript subscript 0 𝜋 𝑚 𝑡 𝑛 𝑡 𝑡 0 {\displaystyle{\displaystyle\int_{0}^{\pi}\cos\left(mt\right)\cos\left(nt% \right)\mathrm{d}t=0}}
\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0
m n 𝑚 𝑛 {\displaystyle{\displaystyle m\neq n}}
int(cos(m*t)*cos(n*t), t = 0..Pi) = 0
Integrate[Cos[m*t]*Cos[n*t], {t, 0, Pi}, GenerateConditions->None] == 0
Successful Failure - Successful [Tested: 6]
4.26.E11 0 π sin 2 ( n t ) d t = 0 π cos 2 ( n t ) d t superscript subscript 0 𝜋 2 𝑛 𝑡 𝑡 superscript subscript 0 𝜋 2 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle\int_{0}^{\pi}{\sin^{2}}\left(nt\right)\mathrm{d}t% =\int_{0}^{\pi}{\cos^{2}}\left(nt\right)\mathrm{d}t}}
\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}
n 0 𝑛 0 {\displaystyle{\displaystyle n\neq 0}}
int((sin(n*t))^(2), t = 0..Pi) = int((cos(n*t))^(2), t = 0..Pi)
Integrate[(Sin[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None]
Successful Failure - Successful [Tested: 3]
4.26.E11 0 π cos 2 ( n t ) d t = 1 2 π superscript subscript 0 𝜋 2 𝑛 𝑡 𝑡 1 2 𝜋 {\displaystyle{\displaystyle\int_{0}^{\pi}{\cos^{2}}\left(nt\right)\mathrm{d}t% =\tfrac{1}{2}\pi}}
\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi
n 0 𝑛 0 {\displaystyle{\displaystyle n\neq 0}}
int((cos(n*t))^(2), t = 0..Pi) = (1)/(2)*Pi
Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Divide[1,2]*Pi
Successful Failure - Successful [Tested: 3]
4.26.E13 0 sin ( t 2 ) d t = 0 cos ( t 2 ) d t superscript subscript 0 superscript 𝑡 2 𝑡 superscript subscript 0 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\int_{0}^{\infty}\sin\left(t^{2}\right)\mathrm{d}t% =\int_{0}^{\infty}\cos\left(t^{2}\right)\mathrm{d}t}}
\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}

int(sin((t)^(2)), t = 0..infinity) = int(cos((t)^(2)), t = 0..infinity)
Integrate[Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 1]
4.26.E13 0 cos ( t 2 ) d t = 1 2 π 2 superscript subscript 0 superscript 𝑡 2 𝑡 1 2 𝜋 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\cos\left(t^{2}\right)\mathrm{d}t% =\frac{1}{2}\sqrt{\frac{\pi}{2}}}}
\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}

int(cos((t)^(2)), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(2))
Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,2]]
Successful Successful - Successful [Tested: 1]
4.26.E14 arcsin x d x = x arcsin x + ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 𝑥 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int\operatorname{arcsin}x\mathrm{d}x=x% \operatorname{arcsin}x+(1-x^{2})^{1/2}}}
\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(arcsin(x), x) = x*arcsin(x)+(1 - (x)^(2))^(1/2)
Integrate[ArcSin[x], x, GenerateConditions->None] == x*ArcSin[x]+(1 - (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 1]
4.26.E15 arccos x d x = x arccos x - ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 𝑥 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int\operatorname{arccos}x\mathrm{d}x=x% \operatorname{arccos}x-(1-x^{2})^{1/2}}}
\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(arccos(x), x) = x*arccos(x)-(1 - (x)^(2))^(1/2)
Integrate[ArcCos[x], x, GenerateConditions->None] == x*ArcCos[x]-(1 - (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 1]
4.26.E16 arctan x d x = x arctan x - 1 2 ln ( 1 + x 2 ) 𝑥 𝑥 𝑥 𝑥 1 2 1 superscript 𝑥 2 {\displaystyle{\displaystyle\int\operatorname{arctan}x\mathrm{d}x=x% \operatorname{arctan}x-\tfrac{1}{2}\ln\left(1+x^{2}\right)}}
\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
int(arctan(x), x) = x*arctan(x)-(1)/(2)*ln(1 + (x)^(2))
Integrate[ArcTan[x], x, GenerateConditions->None] == x*ArcTan[x]-Divide[1,2]*Log[1 + (x)^(2)]
Successful Successful - Successful [Tested: 3]
4.26.E17 arccsc x d x = x arccsc x + ln ( x + ( x 2 - 1 ) 1 / 2 ) 𝑥 𝑥 𝑥 𝑥 𝑥 superscript superscript 𝑥 2 1 1 2 {\displaystyle{\displaystyle\int\operatorname{arccsc}x\mathrm{d}x=x% \operatorname{arccsc}x+\ln\left(x+(x^{2}-1)^{1/2}\right)}}
\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}
1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle 1<x,x<\infty}}
int(arccsc(x), x) = x*arccsc(x)+ ln(x +((x)^(2)- 1)^(1/2))
Integrate[ArcCsc[x], x, GenerateConditions->None] == x*ArcCsc[x]+ Log[x +((x)^(2)- 1)^(1/2)]
Successful Failure -
Failed [2 / 2]
Result: Complex[-1.1102230246251565*^-16, -1.5707963267948966]
Test Values: {Rule[x, 1.5]}

Result: Complex[-4.440892098500626*^-16, -1.5707963267948966]
Test Values: {Rule[x, 2]}

4.26.E18 arcsec x d x = x arcsec x - ln ( x + ( x 2 - 1 ) 1 / 2 ) 𝑥 𝑥 𝑥 𝑥 𝑥 superscript superscript 𝑥 2 1 1 2 {\displaystyle{\displaystyle\int\operatorname{arcsec}x\mathrm{d}x=x% \operatorname{arcsec}x-\ln\left(x+(x^{2}-1)^{1/2}\right)}}
\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}
1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle 1<x,x<\infty}}
int(arcsec(x), x) = x*arcsec(x)- ln(x +((x)^(2)- 1)^(1/2))
Integrate[ArcSec[x], x, GenerateConditions->None] == x*ArcSec[x]- Log[x +((x)^(2)- 1)^(1/2)]
Successful Failure -
Failed [2 / 2]
Result: Complex[1.1102230246251565*^-16, 1.5707963267948966]
Test Values: {Rule[x, 1.5]}

Result: Complex[4.440892098500626*^-16, 1.5707963267948966]
Test Values: {Rule[x, 2]}

4.26.E19 arccot x d x = x arccot x + 1 2 ln ( 1 + x 2 ) 𝑥 𝑥 𝑥 𝑥 1 2 1 superscript 𝑥 2 {\displaystyle{\displaystyle\int\operatorname{arccot}x\mathrm{d}x=x% \operatorname{arccot}x+\tfrac{1}{2}\ln\left(1+x^{2}\right)}}
\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}
0 < x , x < formulae-sequence 0 𝑥 𝑥 {\displaystyle{\displaystyle 0<x,x<\infty}}
int(arccot(x), x) = x*arccot(x)+(1)/(2)*ln(1 + (x)^(2))
Integrate[ArcCot[x], x, GenerateConditions->None] == x*ArcCot[x]+Divide[1,2]*Log[1 + (x)^(2)]
Successful Successful - Successful [Tested: 3]
4.26.E20 x arcsin x d x = ( x 2 2 - 1 4 ) arcsin x + x 4 ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 superscript 𝑥 2 2 1 4 𝑥 𝑥 4 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int x\operatorname{arcsin}x\mathrm{d}x=\left(% \frac{x^{2}}{2}-\frac{1}{4}\right)\operatorname{arcsin}x+\frac{x}{4}(1-x^{2})^% {1/2}}}
\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(x*arcsin(x), x) = (((x)^(2))/(2)-(1)/(4))*arcsin(x)+(x)/(4)*(1 - (x)^(2))^(1/2)
Integrate[x*ArcSin[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcSin[x]+Divide[x,4]*(1 - (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 1]
4.26.E21 x arccos x d x = ( x 2 2 - 1 4 ) arccos x - x 4 ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 superscript 𝑥 2 2 1 4 𝑥 𝑥 4 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int x\operatorname{arccos}x\mathrm{d}x=\left(% \frac{x^{2}}{2}-\frac{1}{4}\right)\operatorname{arccos}x-\frac{x}{4}(1-x^{2})^% {1/2}}}
\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(x*arccos(x), x) = (((x)^(2))/(2)-(1)/(4))*arccos(x)-(x)/(4)*(1 - (x)^(2))^(1/2)
Integrate[x*ArcCos[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcCos[x]-Divide[x,4]*(1 - (x)^(2))^(1/2)
Failure Failure
Failed [1 / 1]
Result: .3926990817
Test Values: {x = .5}

Failed [1 / 1]
Result: 0.3926990816987242
Test Values: {Rule[x, 0.5]}

4.28.E1 sinh z = e z - e - z 2 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 2 {\displaystyle{\displaystyle\sinh z=\frac{e^{z}-e^{-z}}{2}}}
\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}

sinh(z) = (exp(z)- exp(- z))/(2)
Sinh[z] == Divide[Exp[z]- Exp[- z],2]
Successful Successful - Successful [Tested: 7]
4.28.E2 cosh z = e z + e - z 2 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 2 {\displaystyle{\displaystyle\cosh z=\frac{e^{z}+e^{-z}}{2}}}
\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}

cosh(z) = (exp(z)+ exp(- z))/(2)
Cosh[z] == Divide[Exp[z]+ Exp[- z],2]
Successful Successful - Successful [Tested: 7]
4.28.E3 cosh z + sinh z = e + z 𝑧 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\cosh z+\sinh z=e^{+z}}}
\cosh@@{z}+\sinh@@{z} = e^{+ z}

cosh(z)+ sinh(z) = exp(+ z)
Cosh[z]+ Sinh[z] == Exp[+ z]
Successful Successful - Successful [Tested: 7]
4.28.E3 cosh z - sinh z = e - z 𝑧 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\cosh z-\sinh z=e^{-z}}}
\cosh@@{z}-\sinh@@{z} = e^{- z}

cosh(z)- sinh(z) = exp(- z)
Cosh[z]- Sinh[z] == Exp[- z]
Successful Successful - Successful [Tested: 7]
4.28.E4 tanh z = sinh z cosh z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\tanh z=\frac{\sinh z}{\cosh z}}}
\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}

tanh(z) = (sinh(z))/(cosh(z))
Tanh[z] == Divide[Sinh[z],Cosh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E5 csch z = 1 sinh z 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{csch}z=\frac{1}{\sinh z}}}
\csch@@{z} = \frac{1}{\sinh@@{z}}

csch(z) = (1)/(sinh(z))
Csch[z] == Divide[1,Sinh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E6 sech z = 1 cosh z 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{sech}z=\frac{1}{\cosh z}}}
\sech@@{z} = \frac{1}{\cosh@@{z}}

sech(z) = (1)/(cosh(z))
Sech[z] == Divide[1,Cosh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E7 coth z = 1 tanh z hyperbolic-cotangent 𝑧 1 𝑧 {\displaystyle{\displaystyle\coth z=\frac{1}{\tanh z}}}
\coth@@{z} = \frac{1}{\tanh@@{z}}

coth(z) = (1)/(tanh(z))
Coth[z] == Divide[1,Tanh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E8 sin ( i z ) = i sinh z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\sin\left(iz\right)=i\sinh z}}
\sin@{iz} = i\sinh@@{z}

sin(I*z) = I*sinh(z)
Sin[I*z] == I*Sinh[z]
Successful Successful - Successful [Tested: 7]
4.28.E9 cos ( i z ) = cosh z 𝑖 𝑧 𝑧 {\displaystyle{\displaystyle\cos\left(iz\right)=\cosh z}}
\cos@{iz} = \cosh@@{z}

cos(I*z) = cosh(z)
Cos[I*z] == Cosh[z]
Successful Successful - Successful [Tested: 7]
4.28.E10 tan ( i z ) = i tanh z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\tan\left(iz\right)=i\tanh z}}
\tan@{iz} = i\tanh@@{z}

tan(I*z) = I*tanh(z)
Tan[I*z] == I*Tanh[z]
Successful Successful - Successful [Tested: 7]
4.28.E11 csc ( i z ) = - i csch z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\csc\left(iz\right)=-i\operatorname{csch}z}}
\csc@{iz} = -i\csch@@{z}

csc(I*z) = - I*csch(z)
Csc[I*z] == - I*Csch[z]
Successful Successful - Successful [Tested: 7]
4.28.E12 sec ( i z ) = sech z 𝑖 𝑧 𝑧 {\displaystyle{\displaystyle\sec\left(iz\right)=\operatorname{sech}z}}
\sec@{iz} = \sech@@{z}

sec(I*z) = sech(z)
Sec[I*z] == Sech[z]
Successful Successful - Successful [Tested: 7]
4.28.E13 cot ( i z ) = - i coth z 𝑖 𝑧 𝑖 hyperbolic-cotangent 𝑧 {\displaystyle{\displaystyle\cot\left(iz\right)=-i\coth z}}
\cot@{iz} = -i\coth@@{z}

cot(I*z) = - I*coth(z)
Cot[I*z] == - I*Coth[z]
Successful Successful - Successful [Tested: 7]
4.31.E1 lim z 0 sinh z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\sinh z}{z}=1}}
\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1

limit((sinh(z))/(z), z = 0) = 1
Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E2 lim z 0 tanh z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\tanh z}{z}=1}}
\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1

limit((tanh(z))/(z), z = 0) = 1
Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E3 lim z 0 cosh z - 1 z 2 = 1 2 subscript 𝑧 0 𝑧 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\cosh z-1}{z^{2}}=\frac{1}{2}}}
\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}

limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]
4.32.E1 cosh x ( sinh x x ) 3 𝑥 superscript 𝑥 𝑥 3 {\displaystyle{\displaystyle\cosh x\leq\left(\frac{\sinh x}{x}\right)^{3}}}
\cosh@@{x} \leq \left(\frac{\sinh@@{x}}{x}\right)^{3}

cosh(x) <= ((sinh(x))/(x))^(3)
Cosh[x] <= (Divide[Sinh[x],x])^(3)
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.32.E2 sin x cos x < tanh x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\sin x\cos x<\tanh x}}
\sin@@{x}\cos@@{x} < \tanh@@{x}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
sin(x)*cos(x) < tanh(x)
Sin[x]*Cos[x] < Tanh[x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.32.E2 tanh x < x 𝑥 𝑥 {\displaystyle{\displaystyle\tanh x<x}}
\tanh@@{x} < x
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
tanh(x) < x
Tanh[x] < x
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.32.E3 | cosh x - cosh y | | x - y | sinh x sinh y 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 {\displaystyle{\displaystyle|\cosh x-\cosh y|\geq|x-y|\sqrt{\sinh x\sinh y}}}
|\cosh@@{x}-\cosh@@{y}| \geq |x-y|\sqrt{\sinh@@{x}\sinh@@{y}}
x > 0 , y > 0 formulae-sequence 𝑥 0 𝑦 0 {\displaystyle{\displaystyle x>0,y>0}}
abs(cosh(x)- cosh(y)) >= abs(x - y)*sqrt(sinh(x)*sinh(y))
Abs[Cosh[x]- Cosh[y]] >= Abs[x - y]*Sqrt[Sinh[x]*Sinh[y]]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
4.32.E4 arctan x 1 2 π tanh x 𝑥 1 2 𝜋 𝑥 {\displaystyle{\displaystyle\operatorname{arctan}x\leq\tfrac{1}{2}\pi\tanh x}}
\atan@@{x} \leq \tfrac{1}{2}\pi\tanh@@{x}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
arctan(x) <= (1)/(2)*Pi*tanh(x)
ArcTan[x] <= Divide[1,2]*Pi*Tanh[x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.34.E1 d d z sinh z = cosh z derivative 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\sinh z=\cosh z}}
\deriv{}{z}\sinh@@{z} = \cosh@@{z}

diff(sinh(z), z) = cosh(z)
D[Sinh[z], z] == Cosh[z]
Successful Successful - Successful [Tested: 7]
4.34.E2 d d z cosh z = sinh z derivative 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\cosh z=\sinh z}}
\deriv{}{z}\cosh@@{z} = \sinh@@{z}

diff(cosh(z), z) = sinh(z)
D[Cosh[z], z] == Sinh[z]
Successful Successful - Successful [Tested: 7]
4.34.E3 d d z tanh z = sech 2 z derivative 𝑧 𝑧 2 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\tanh z={% \operatorname{sech}^{2}}z}}
\deriv{}{z}\tanh@@{z} = \sech^{2}@@{z}

diff(tanh(z), z) = (sech(z))^(2)
D[Tanh[z], z] == (Sech[z])^(2)
Successful Successful - Successful [Tested: 7]
4.34.E4 d d z csch z = - csch z coth z derivative 𝑧 𝑧 𝑧 hyperbolic-cotangent 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{csch}z% =-\operatorname{csch}z\coth z}}
\deriv{}{z}\csch@@{z} = -\csch@@{z}\coth@@{z}

diff(csch(z), z) = - csch(z)*coth(z)
D[Csch[z], z] == - Csch[z]*Coth[z]
Successful Successful - Successful [Tested: 7]
4.34.E5 d d z sech z = - sech z tanh z derivative 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{sech}z% =-\operatorname{sech}z\tanh z}}
\deriv{}{z}\sech@@{z} = -\sech@@{z}\tanh@@{z}

diff(sech(z), z) = - sech(z)*tanh(z)
D[Sech[z], z] == - Sech[z]*Tanh[z]
Successful Successful - Successful [Tested: 7]
4.34.E6 d d z coth z = - csch 2 z derivative 𝑧 hyperbolic-cotangent 𝑧 2 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\coth z=-{% \operatorname{csch}^{2}}z}}
\deriv{}{z}\coth@@{z} = -\csch^{2}@@{z}

diff(coth(z), z) = - (csch(z))^(2)
D[Coth[z], z] == - (Csch[z])^(2)
Successful Successful - Successful [Tested: 7]
4.34.E7 d 2 w d z 2 - a 2 w = 0 derivative 𝑤 𝑧 2 superscript 𝑎 2 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}-a^{2}w% =0}}
\deriv[2]{w}{z}-a^{2}w = 0

diff(w, [z$(2)])- (a)^(2)* w = 0
D[w, {z, 2}]- (a)^(2)* w == 0
Failure Failure
Failed [300 / 300]
Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.948557159-1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-1.948557158514987, -1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.948557158514987, -1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.34.E8 ( d w d z ) 2 - a 2 w 2 = 1 superscript derivative 𝑤 𝑧 2 superscript 𝑎 2 superscript 𝑤 2 1 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{2}-a% ^{2}w^{2}=1}}
\left(\deriv{w}{z}\right)^{2}-a^{2}w^{2} = 1

(diff(w, z))^(2)- (a)^(2)* (w)^(2) = 1
(D[w, z])^(2)- (a)^(2)* (w)^(2) == 1
Failure Failure
Failed [300 / 300]
Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.34.E9 ( d w d z ) 2 - a 2 w 2 = - 1 superscript derivative 𝑤 𝑧 2 superscript 𝑎 2 superscript 𝑤 2 1 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{2}-a% ^{2}w^{2}=-1}}
\left(\deriv{w}{z}\right)^{2}-a^{2}w^{2} = -1

(diff(w, z))^(2)- (a)^(2)* (w)^(2) = - 1
(D[w, z])^(2)- (a)^(2)* (w)^(2) == - 1
Failure Failure
Failed [272 / 300]
Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [272 / 300]
Result: Complex[-0.12500000000000022, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.12500000000000022, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.34.E10 d w d z + a 2 w 2 = 1 derivative 𝑤 𝑧 superscript 𝑎 2 superscript 𝑤 2 1 {\displaystyle{\displaystyle\frac{\mathrm{d}w}{\mathrm{d}z}+a^{2}w^{2}=1}}
\deriv{w}{z}+a^{2}w^{2} = 1

diff(w, z)+ (a)^(2)* (w)^(2) = 1
D[w, z]+ (a)^(2)* (w)^(2) == 1
Failure Failure
Failed [272 / 300]
Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [272 / 300]
Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.34.E11 w = A cosh ( a z ) + B sinh ( a z ) 𝑤 𝐴 𝑎 𝑧 𝐵 𝑎 𝑧 {\displaystyle{\displaystyle w=A\cosh\left(az\right)+B\sinh\left(az\right)}}
w = A\cosh@{az}+B\sinh@{az}

w = A*cosh(a*z)+ B*sinh(a*z)
w == A*Cosh[a*z]+ B*Sinh[a*z]
Failure Failure
Failed [300 / 300]
Result: .6001928989+.561234643*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -.6457530113+1.981963256*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .9837329493+.425340516e-1*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -.2074648399-3.005064943*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.6001928983405861, 0.5612346426489729]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.645753012062901, 1.9819632558589868]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.34.E12 w = ( 1 / a ) sinh ( a z + c ) 𝑤 1 𝑎 𝑎 𝑧 𝑐 {\displaystyle{\displaystyle w=(1/a)\sinh\left(az+c\right)}}
w = (1/a)\sinh@{az+c}

w = (1/a)*sinh(a*z + c)
w == (1/a)*Sinh[a*z + c]
Failure Failure
Failed [300 / 300]
Result: -3.126061208-3.246674013*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .7188715257-.3314459800*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .265391293e-1+3.580357057*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .7673365303+.9636329126*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-3.126061206522873, -3.246674011194613]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.7188715253469982, -0.33144598009263954]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.34.E13 w = ( 1 / a ) cosh ( a z + c ) 𝑤 1 𝑎 𝑎 𝑧 𝑐 {\displaystyle{\displaystyle w=(1/a)\cosh\left(az+c\right)}}
w = (1/a)\cosh@{az+c}

w = (1/a)*cosh(a*z + c)
w == (1/a)*Cosh[a*z + c]
Failure Failure
Failed [300 / 300]
Result: 4.887803259+4.219013756*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.097709449+1.028092043*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.724372908-2.512669644*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: 1.363701096+.4080617947*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[4.887803257491119, 4.219013753952423]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0977094487385304, 1.0280920432224616]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.34.E14 w = ( 1 / a ) coth ( a z + c ) 𝑤 1 𝑎 hyperbolic-cotangent 𝑎 𝑧 𝑐 {\displaystyle{\displaystyle w=(1/a)\coth\left(az+c\right)}}
w = (1/a)\coth@{az+c}

w = (1/a)*coth(a*z + c)
w == (1/a)*Coth[a*z + c]
Failure Failure
Failed [300 / 300]
Result: .1990274306+.5049301211*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .4235738270+.6074604561*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .2119596261+.4924838498*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .5938323036-.1576784256*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.19902743024251868, 0.504930121080845]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.423573826800421, 0.6074604562830159]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.35.E1 sinh ( u + v ) = sinh u cosh v + cosh u sinh v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\sinh\left(u+v\right)=\sinh u\cosh v+\cosh u\sinh v}}
\sinh@{u+ v} = \sinh@@{u}\cosh@@{v}+\cosh@@{u}\sinh@@{v}

sinh(u + v) = sinh(u)*cosh(v)+ cosh(u)*sinh(v)
Sinh[u + v] == Sinh[u]*Cosh[v]+ Cosh[u]*Sinh[v]
Successful Successful - Successful [Tested: 100]
4.35.E1 sinh ( u - v ) = sinh u cosh v - cosh u sinh v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\sinh\left(u-v\right)=\sinh u\cosh v-\cosh u\sinh v}}
\sinh@{u- v} = \sinh@@{u}\cosh@@{v}-\cosh@@{u}\sinh@@{v}

sinh(u - v) = sinh(u)*cosh(v)- cosh(u)*sinh(v)
Sinh[u - v] == Sinh[u]*Cosh[v]- Cosh[u]*Sinh[v]
Successful Successful - Successful [Tested: 100]
4.35.E2 cosh ( u + v ) = cosh u cosh v + sinh u sinh v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\cosh\left(u+v\right)=\cosh u\cosh v+\sinh u\sinh v}}
\cosh@{u+ v} = \cosh@@{u}\cosh@@{v}+\sinh@@{u}\sinh@@{v}

cosh(u + v) = cosh(u)*cosh(v)+ sinh(u)*sinh(v)
Cosh[u + v] == Cosh[u]*Cosh[v]+ Sinh[u]*Sinh[v]
Successful Successful - Successful [Tested: 100]
4.35.E2 cosh ( u - v ) = cosh u cosh v - sinh u sinh v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\cosh\left(u-v\right)=\cosh u\cosh v-\sinh u\sinh v}}
\cosh@{u- v} = \cosh@@{u}\cosh@@{v}-\sinh@@{u}\sinh@@{v}

cosh(u - v) = cosh(u)*cosh(v)- sinh(u)*sinh(v)
Cosh[u - v] == Cosh[u]*Cosh[v]- Sinh[u]*Sinh[v]
Successful Successful - Successful [Tested: 100]
4.35.E3 tanh ( u + v ) = tanh u + tanh v 1 + tanh u tanh v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\tanh\left(u+v\right)=\frac{\tanh u+\tanh v}{1+% \tanh u\tanh v}}}
\tanh@{u+ v} = \frac{\tanh@@{u}+\tanh@@{v}}{1+\tanh@@{u}\tanh@@{v}}

tanh(u + v) = (tanh(u)+ tanh(v))/(1 + tanh(u)*tanh(v))
Tanh[u + v] == Divide[Tanh[u]+ Tanh[v],1 + Tanh[u]*Tanh[v]]
Successful Successful - Successful [Tested: 100]
4.35.E3 tanh ( u - v ) = tanh u - tanh v 1 - tanh u tanh v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\tanh\left(u-v\right)=\frac{\tanh u-\tanh v}{1-% \tanh u\tanh v}}}
\tanh@{u- v} = \frac{\tanh@@{u}-\tanh@@{v}}{1-\tanh@@{u}\tanh@@{v}}

tanh(u - v) = (tanh(u)- tanh(v))/(1 - tanh(u)*tanh(v))
Tanh[u - v] == Divide[Tanh[u]- Tanh[v],1 - Tanh[u]*Tanh[v]]
Successful Successful - Successful [Tested: 100]
4.35.E4 coth ( u + v ) = + coth u coth v + 1 coth u + coth v hyperbolic-cotangent 𝑢 𝑣 hyperbolic-cotangent 𝑢 hyperbolic-cotangent 𝑣 1 hyperbolic-cotangent 𝑢 hyperbolic-cotangent 𝑣 {\displaystyle{\displaystyle\coth\left(u+v\right)=\frac{+\coth u\coth v+1}{% \coth u+\coth v}}}
\coth@{u+ v} = \frac{+\coth@@{u}\coth@@{v}+1}{\coth@@{u}+\coth@@{v}}

coth(u + v) = (+ coth(u)*coth(v)+ 1)/(coth(u)+ coth(v))
Coth[u + v] == Divide[+ Coth[u]*Coth[v]+ 1,Coth[u]+ Coth[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[4.333014420201075*^14, -2.3525621062227262*^14]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.35.E4 coth ( u - v ) = - coth u coth v + 1 coth u - coth v hyperbolic-cotangent 𝑢 𝑣 hyperbolic-cotangent 𝑢 hyperbolic-cotangent 𝑣 1 hyperbolic-cotangent 𝑢 hyperbolic-cotangent 𝑣 {\displaystyle{\displaystyle\coth\left(u-v\right)=\frac{-\coth u\coth v+1}{% \coth u-\coth v}}}
\coth@{u- v} = \frac{-\coth@@{u}\coth@@{v}+1}{\coth@@{u}-\coth@@{v}}

coth(u - v) = (- coth(u)*coth(v)+ 1)/(coth(u)- coth(v))
Coth[u - v] == Divide[- Coth[u]*Coth[v]+ 1,Coth[u]- Coth[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.35.E5 sinh u + sinh v = 2 sinh ( u + v 2 ) cosh ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\sinh u+\sinh v=2\sinh\left(\frac{u+v}{2}\right)% \cosh\left(\frac{u-v}{2}\right)}}
\sinh@@{u}+\sinh@@{v} = 2\sinh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}

sinh(u)+ sinh(v) = 2*sinh((u + v)/(2))*cosh((u - v)/(2))
Sinh[u]+ Sinh[v] == 2*Sinh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.35.E6 sinh u - sinh v = 2 cosh ( u + v 2 ) sinh ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\sinh u-\sinh v=2\cosh\left(\frac{u+v}{2}\right)% \sinh\left(\frac{u-v}{2}\right)}}
\sinh@@{u}-\sinh@@{v} = 2\cosh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}

sinh(u)- sinh(v) = 2*cosh((u + v)/(2))*sinh((u - v)/(2))
Sinh[u]- Sinh[v] == 2*Cosh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.35.E7 cosh u + cosh v = 2 cosh ( u + v 2 ) cosh ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\cosh u+\cosh v=2\cosh\left(\frac{u+v}{2}\right)% \cosh\left(\frac{u-v}{2}\right)}}
\cosh@@{u}+\cosh@@{v} = 2\cosh@{\frac{u+v}{2}}\cosh@{\frac{u-v}{2}}

cosh(u)+ cosh(v) = 2*cosh((u + v)/(2))*cosh((u - v)/(2))
Cosh[u]+ Cosh[v] == 2*Cosh[Divide[u + v,2]]*Cosh[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.35.E8 cosh u - cosh v = 2 sinh ( u + v 2 ) sinh ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\cosh u-\cosh v=2\sinh\left(\frac{u+v}{2}\right)% \sinh\left(\frac{u-v}{2}\right)}}
\cosh@@{u}-\cosh@@{v} = 2\sinh@{\frac{u+v}{2}}\sinh@{\frac{u-v}{2}}

cosh(u)- cosh(v) = 2*sinh((u + v)/(2))*sinh((u - v)/(2))
Cosh[u]- Cosh[v] == 2*Sinh[Divide[u + v,2]]*Sinh[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.35.E9 tanh u + tanh v = sinh ( u + v ) cosh u cosh v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\tanh u+\tanh v=\frac{\sinh\left(u+v\right)}{\cosh u% \cosh v}}}
\tanh@@{u}+\tanh@@{v} = \frac{\sinh@{u+ v}}{\cosh@@{u}\cosh@@{v}}

tanh(u)+ tanh(v) = (sinh(u + v))/(cosh(u)*cosh(v))
Tanh[u]+ Tanh[v] == Divide[Sinh[u + v],Cosh[u]*Cosh[v]]
Successful Successful - Successful [Tested: 100]
4.35.E9 tanh u - tanh v = sinh ( u - v ) cosh u cosh v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\tanh u-\tanh v=\frac{\sinh\left(u-v\right)}{\cosh u% \cosh v}}}
\tanh@@{u}-\tanh@@{v} = \frac{\sinh@{u- v}}{\cosh@@{u}\cosh@@{v}}

tanh(u)- tanh(v) = (sinh(u - v))/(cosh(u)*cosh(v))
Tanh[u]- Tanh[v] == Divide[Sinh[u - v],Cosh[u]*Cosh[v]]
Successful Successful - Successful [Tested: 100]
4.35.E10 coth u + coth v = sinh ( v + u ) sinh u sinh v hyperbolic-cotangent 𝑢 hyperbolic-cotangent 𝑣 𝑣 𝑢 𝑢 𝑣 {\displaystyle{\displaystyle\coth u+\coth v=\frac{\sinh\left(v+u\right)}{\sinh u% \sinh v}}}
\coth@@{u}+\coth@@{v} = \frac{\sinh@{v+ u}}{\sinh@@{u}\sinh@@{v}}

coth(u)+ coth(v) = (sinh(v + u))/(sinh(u)*sinh(v))
Coth[u]+ Coth[v] == Divide[Sinh[v + u],Sinh[u]*Sinh[v]]
Successful Successful - Successful [Tested: 100]
4.35.E10 coth u - coth v = sinh ( v - u ) sinh u sinh v hyperbolic-cotangent 𝑢 hyperbolic-cotangent 𝑣 𝑣 𝑢 𝑢 𝑣 {\displaystyle{\displaystyle\coth u-\coth v=\frac{\sinh\left(v-u\right)}{\sinh u% \sinh v}}}
\coth@@{u}-\coth@@{v} = \frac{\sinh@{v- u}}{\sinh@@{u}\sinh@@{v}}

coth(u)- coth(v) = (sinh(v - u))/(sinh(u)*sinh(v))
Coth[u]- Coth[v] == Divide[Sinh[v - u],Sinh[u]*Sinh[v]]
Successful Successful - Successful [Tested: 100]
4.35.E11 cosh 2 z - sinh 2 z = 1 2 𝑧 2 𝑧 1 {\displaystyle{\displaystyle{\cosh^{2}}z-{\sinh^{2}}z=1}}
\cosh^{2}@@{z}-\sinh^{2}@@{z} = 1

(cosh(z))^(2)- (sinh(z))^(2) = 1
(Cosh[z])^(2)- (Sinh[z])^(2) == 1
Successful Successful - Successful [Tested: 7]
4.35.E12 sech 2 z = 1 - tanh 2 z 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\operatorname{sech}^{2}}z=1-{\tanh^{2}}z}}
\sech^{2}@@{z} = 1-\tanh^{2}@@{z}

(sech(z))^(2) = 1 - (tanh(z))^(2)
(Sech[z])^(2) == 1 - (Tanh[z])^(2)
Successful Successful - Successful [Tested: 7]
4.35.E13 csch 2 z = coth 2 z - 1 2 𝑧 hyperbolic-cotangent 2 𝑧 1 {\displaystyle{\displaystyle{\operatorname{csch}^{2}}z={\coth^{2}}z-1}}
\csch^{2}@@{z} = \coth^{2}@@{z}-1

(csch(z))^(2) = (coth(z))^(2)- 1
(Csch[z])^(2) == (Coth[z])^(2)- 1
Successful Successful - Successful [Tested: 7]
4.35.E14 2 sinh u sinh v = cosh ( u + v ) - cosh ( u - v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\sinh u\sinh v=\cosh\left(u+v\right)-\cosh\left(% u-v\right)}}
2\sinh@@{u}\sinh@@{v} = \cosh@{u+v}-\cosh@{u-v}

2*sinh(u)*sinh(v) = cosh(u + v)- cosh(u - v)
2*Sinh[u]*Sinh[v] == Cosh[u + v]- Cosh[u - v]
Successful Successful - Successful [Tested: 100]
4.35.E15 2 cosh u cosh v = cosh ( u + v ) + cosh ( u - v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\cosh u\cosh v=\cosh\left(u+v\right)+\cosh\left(% u-v\right)}}
2\cosh@@{u}\cosh@@{v} = \cosh@{u+v}+\cosh@{u-v}

2*cosh(u)*cosh(v) = cosh(u + v)+ cosh(u - v)
2*Cosh[u]*Cosh[v] == Cosh[u + v]+ Cosh[u - v]
Successful Successful - Successful [Tested: 100]
4.35.E16 2 sinh u cosh v = sinh ( u + v ) + sinh ( u - v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\sinh u\cosh v=\sinh\left(u+v\right)+\sinh\left(% u-v\right)}}
2\sinh@@{u}\cosh@@{v} = \sinh@{u+v}+\sinh@{u-v}

2*sinh(u)*cosh(v) = sinh(u + v)+ sinh(u - v)
2*Sinh[u]*Cosh[v] == Sinh[u + v]+ Sinh[u - v]
Successful Successful - Successful [Tested: 100]
4.35.E17 sinh 2 u - sinh 2 v = sinh ( u + v ) sinh ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\sinh^{2}}u-{\sinh^{2}}v=\sinh\left(u+v\right)% \sinh\left(u-v\right)}}
\sinh^{2}@@{u}-\sinh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}

(sinh(u))^(2)- (sinh(v))^(2) = sinh(u + v)*sinh(u - v)
(Sinh[u])^(2)- (Sinh[v])^(2) == Sinh[u + v]*Sinh[u - v]
Successful Successful - Successful [Tested: 100]
4.35.E18 cosh 2 u - cosh 2 v = sinh ( u + v ) sinh ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\cosh^{2}}u-{\cosh^{2}}v=\sinh\left(u+v\right)% \sinh\left(u-v\right)}}
\cosh^{2}@@{u}-\cosh^{2}@@{v} = \sinh@{u+v}\sinh@{u-v}

(cosh(u))^(2)- (cosh(v))^(2) = sinh(u + v)*sinh(u - v)
(Cosh[u])^(2)- (Cosh[v])^(2) == Sinh[u + v]*Sinh[u - v]
Successful Successful - Successful [Tested: 100]
4.35.E19 sinh 2 u + cosh 2 v = cosh ( u + v ) cosh ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\sinh^{2}}u+{\cosh^{2}}v=\cosh\left(u+v\right)% \cosh\left(u-v\right)}}
\sinh^{2}@@{u}+\cosh^{2}@@{v} = \cosh@{u+v}\cosh@{u-v}

(sinh(u))^(2)+ (cosh(v))^(2) = cosh(u + v)*cosh(u - v)
(Sinh[u])^(2)+ (Cosh[v])^(2) == Cosh[u + v]*Cosh[u - v]
Successful Successful - Successful [Tested: 100]
4.35.E20 sinh z 2 = ( cosh z - 1 2 ) 1 / 2 𝑧 2 superscript 𝑧 1 2 1 2 {\displaystyle{\displaystyle\sinh\frac{z}{2}=\left(\frac{\cosh z-1}{2}\right)^% {1/2}}}
\sinh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{2}\right)^{1/2}

sinh((z)/(2)) = ((cosh(z)- 1)/(2))^(1/2)
Sinh[Divide[z,2]] == (Divide[Cosh[z]- 1,2])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.4585952894+.8655770340*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8655716642-.5419255224*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.4585952893468803, 0.8655770337160631]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8655716640572735, -0.5419255224573363]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.35.E21 cosh z 2 = ( cosh z + 1 2 ) 1 / 2 𝑧 2 superscript 𝑧 1 2 1 2 {\displaystyle{\displaystyle\cosh\frac{z}{2}=\left(\frac{\cosh z+1}{2}\right)^% {1/2}}}
\cosh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}+1}{2}\right)^{1/2}

cosh((z)/(2)) = ((cosh(z)+ 1)/(2))^(1/2)
Cosh[Divide[z,2]] == (Divide[Cosh[z]+ 1,2])^(1/2)
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.35.E22 tanh z 2 = ( cosh z - 1 cosh z + 1 ) 1 / 2 𝑧 2 superscript 𝑧 1 𝑧 1 1 2 {\displaystyle{\displaystyle\tanh\frac{z}{2}=\left(\frac{\cosh z-1}{\cosh z+1}% \right)^{1/2}}}
\tanh@@{\frac{z}{2}} = \left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2}

tanh((z)/(2)) = ((cosh(z)- 1)/(cosh(z)+ 1))^(1/2)
Tanh[Divide[z,2]] == (Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.5869891489+.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8595320616-.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.5869891488727425, 0.858086492859854]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8595320613685857, -0.42117421488499707]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.35.E22 ( cosh z - 1 cosh z + 1 ) 1 / 2 = cosh z - 1 sinh z superscript 𝑧 1 𝑧 1 1 2 𝑧 1 𝑧 {\displaystyle{\displaystyle\left(\frac{\cosh z-1}{\cosh z+1}\right)^{1/2}=% \frac{\cosh z-1}{\sinh z}}}
\left(\frac{\cosh@@{z}-1}{\cosh@@{z}+1}\right)^{1/2} = \frac{\cosh@@{z}-1}{\sinh@@{z}}

((cosh(z)- 1)/(cosh(z)+ 1))^(1/2) = (cosh(z)- 1)/(sinh(z))
(Divide[Cosh[z]- 1,Cosh[z]+ 1])^(1/2) == Divide[Cosh[z]- 1,Sinh[z]]
Failure Failure
Failed [2 / 7]
Result: .5869891489-.8580864930*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .8595320615+.4211742148*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[0.5869891488727426, -0.8580864928598539]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.859532061368586, 0.42117421488499684]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.35.E22 cosh z - 1 sinh z = sinh z cosh z + 1 𝑧 1 𝑧 𝑧 𝑧 1 {\displaystyle{\displaystyle\frac{\cosh z-1}{\sinh z}=\frac{\sinh z}{\cosh z+1% }}}
\frac{\cosh@@{z}-1}{\sinh@@{z}} = \frac{\sinh@@{z}}{\cosh@@{z}+1}

(cosh(z)- 1)/(sinh(z)) = (sinh(z))/(cosh(z)+ 1)
Divide[Cosh[z]- 1,Sinh[z]] == Divide[Sinh[z],Cosh[z]+ 1]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
4.35.E23 sinh ( - z ) = - sinh z 𝑧 𝑧 {\displaystyle{\displaystyle\sinh\left(-z\right)=-\sinh z}}
\sinh@{-z} = -\sinh@@{z}

sinh(- z) = - sinh(z)
Sinh[- z] == - Sinh[z]
Successful Successful - Successful [Tested: 7]
4.35.E24 cosh ( - z ) = cosh z 𝑧 𝑧 {\displaystyle{\displaystyle\cosh\left(-z\right)=\cosh z}}
\cosh@{-z} = \cosh@@{z}

cosh(- z) = cosh(z)
Cosh[- z] == Cosh[z]
Successful Successful - Successful [Tested: 7]
4.35.E25 tanh ( - z ) = - tanh z 𝑧 𝑧 {\displaystyle{\displaystyle\tanh\left(-z\right)=-\tanh z}}
\tanh@{-z} = -\tanh@@{z}

tanh(- z) = - tanh(z)
Tanh[- z] == - Tanh[z]
Successful Successful - Successful [Tested: 7]
4.35.E26 sinh ( 2 z ) = 2 sinh z cosh z 2 𝑧 2 𝑧 𝑧 {\displaystyle{\displaystyle\sinh\left(2z\right)=2\sinh z\cosh z}}
\sinh@{2z} = 2\sinh@@{z}\cosh@@{z}

sinh(2*z) = 2*sinh(z)*cosh(z)
Sinh[2*z] == 2*Sinh[z]*Cosh[z]
Successful Successful - Successful [Tested: 7]
4.35.E26 2 sinh z cosh z = 2 tanh z 1 - tanh 2 z 2 𝑧 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle 2\sinh z\cosh z=\frac{2\tanh z}{1-{\tanh^{2}}z}}}
2\sinh@@{z}\cosh@@{z} = \frac{2\tanh@@{z}}{1-\tanh^{2}@@{z}}

2*sinh(z)*cosh(z) = (2*tanh(z))/(1 - (tanh(z))^(2))
2*Sinh[z]*Cosh[z] == Divide[2*Tanh[z],1 - (Tanh[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.35.E27 cosh ( 2 z ) = 2 cosh 2 z - 1 2 𝑧 2 2 𝑧 1 {\displaystyle{\displaystyle\cosh\left(2z\right)=2{\cosh^{2}}z-1}}
\cosh@{2z} = 2\cosh^{2}@@{z}-1

cosh(2*z) = 2*(cosh(z))^(2)- 1
Cosh[2*z] == 2*(Cosh[z])^(2)- 1
Successful Successful - Successful [Tested: 7]
4.35.E27 2 cosh 2 z - 1 = 2 sinh 2 z + 1 2 2 𝑧 1 2 2 𝑧 1 {\displaystyle{\displaystyle 2{\cosh^{2}}z-1=2{\sinh^{2}}z+1\\ }}
2\cosh^{2}@@{z}-1 = 2\sinh^{2}@@{z}+1\\

2*(cosh(z))^(2)- 1 = 2*(sinh(z))^(2)+ 1
2*(Cosh[z])^(2)- 1 == 2*(Sinh[z])^(2)+ 1
Successful Successful - Successful [Tested: 7]
4.35.E27 2 sinh 2 z + 1 = cosh 2 z + sinh 2 z 2 2 𝑧 1 2 𝑧 2 𝑧 {\displaystyle{\displaystyle 2{\sinh^{2}}z+1\\ ={\cosh^{2}}z+{\sinh^{2}}z}}
2\sinh^{2}@@{z}+1\\ = \cosh^{2}@@{z}+\sinh^{2}@@{z}

2*(sinh(z))^(2)+ 1 = (cosh(z))^(2)+ (sinh(z))^(2)
2*(Sinh[z])^(2)+ 1 == (Cosh[z])^(2)+ (Sinh[z])^(2)
Successful Successful - Successful [Tested: 7]
4.35.E28 tanh ( 2 z ) = 2 tanh z 1 + tanh 2 z 2 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle\tanh\left(2z\right)=\frac{2\tanh z}{1+{\tanh^{2}}% z}}}
\tanh@{2z} = \frac{2\tanh@@{z}}{1+\tanh^{2}@@{z}}

tanh(2*z) = (2*tanh(z))/(1 + (tanh(z))^(2))
Tanh[2*z] == Divide[2*Tanh[z],1 + (Tanh[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.35.E29 sinh ( 3 z ) = 3 sinh z + 4 sinh 3 z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\sinh\left(3z\right)=3\sinh z+4{\sinh^{3}}z}}
\sinh@{3z} = 3\sinh@@{z}+4\sinh^{3}@@{z}

sinh(3*z) = 3*sinh(z)+ 4*(sinh(z))^(3)
Sinh[3*z] == 3*Sinh[z]+ 4*(Sinh[z])^(3)
Successful Successful - Successful [Tested: 7]
4.35.E30 cosh ( 3 z ) = - 3 cosh z + 4 cosh 3 z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\cosh\left(3z\right)=-3\cosh z+4{\cosh^{3}}z}}
\cosh@{3z} = -3\cosh@@{z}+4\cosh^{3}@@{z}

cosh(3*z) = - 3*cosh(z)+ 4*(cosh(z))^(3)
Cosh[3*z] == - 3*Cosh[z]+ 4*(Cosh[z])^(3)
Successful Successful - Successful [Tested: 7]
4.35.E31 sinh ( 4 z ) = 4 sinh 3 z cosh z + 4 cosh 3 z sinh z 4 𝑧 4 3 𝑧 𝑧 4 3 𝑧 𝑧 {\displaystyle{\displaystyle\sinh\left(4z\right)=4{\sinh^{3}}z\cosh z+4{\cosh^% {3}}z\sinh z}}
\sinh@{4z} = 4\sinh^{3}@@{z}\cosh@@{z}+4\cosh^{3}@@{z}\sinh@@{z}

sinh(4*z) = 4*(sinh(z))^(3)* cosh(z)+ 4*(cosh(z))^(3)* sinh(z)
Sinh[4*z] == 4*(Sinh[z])^(3)* Cosh[z]+ 4*(Cosh[z])^(3)* Sinh[z]
Successful Successful - Successful [Tested: 7]
4.35.E32 cosh ( 4 z ) = cosh 4 z + 6 sinh 2 z cosh 2 z + sinh 4 z 4 𝑧 4 𝑧 6 2 𝑧 2 𝑧 4 𝑧 {\displaystyle{\displaystyle\cosh\left(4z\right)={\cosh^{4}}z+6{\sinh^{2}}z{% \cosh^{2}}z+{\sinh^{4}}z}}
\cosh@{4z} = \cosh^{4}@@{z}+6\sinh^{2}@@{z}\cosh^{2}@@{z}+\sinh^{4}@@{z}

cosh(4*z) = (cosh(z))^(4)+ 6*(sinh(z))^(2)* (cosh(z))^(2)+ (sinh(z))^(4)
Cosh[4*z] == (Cosh[z])^(4)+ 6*(Sinh[z])^(2)* (Cosh[z])^(2)+ (Sinh[z])^(4)
Successful Successful - Successful [Tested: 7]
4.35.E33 cosh ( n z ) + sinh ( n z ) = ( cosh z + sinh z ) n 𝑛 𝑧 𝑛 𝑧 superscript 𝑧 𝑧 𝑛 {\displaystyle{\displaystyle\cosh\left(nz\right)+\sinh\left(nz\right)=(\cosh z% +\sinh z)^{n}}}
\cosh@{nz}+\sinh@{nz} = (\cosh@@{z}+\sinh@@{z})^{n}

cosh(n*z)+ sinh(n*z) = (cosh(z)+ sinh(z))^(n)
Cosh[n*z]+ Sinh[n*z] == (Cosh[z]+ Sinh[z])^(n)
Successful Successful - Successful [Tested: 7]
4.35.E33 cosh ( n z ) - sinh ( n z ) = ( cosh z - sinh z ) n 𝑛 𝑧 𝑛 𝑧 superscript 𝑧 𝑧 𝑛 {\displaystyle{\displaystyle\cosh\left(nz\right)-\sinh\left(nz\right)=(\cosh z% -\sinh z)^{n}}}
\cosh@{nz}-\sinh@{nz} = (\cosh@@{z}-\sinh@@{z})^{n}

cosh(n*z)- sinh(n*z) = (cosh(z)- sinh(z))^(n)
Cosh[n*z]- Sinh[n*z] == (Cosh[z]- Sinh[z])^(n)
Successful Successful - Successful [Tested: 7]
4.35.E34 sinh z = sinh x cos y + i cosh x sin y 𝑧 𝑥 𝑦 𝑖 𝑥 𝑦 {\displaystyle{\displaystyle\sinh z=\sinh x\cos y+i\cosh x\sin y}}
\sinh@@{z} = \sinh@@{x}\cos@@{y}+i\cosh@@{x}\sin@@{y}

sinh(x + y*I) = sinh(x)*cos(y)+ I*cosh(x)*sin(y)
Sinh[x + y*I] == Sinh[x]*Cos[y]+ I*Cosh[x]*Sin[y]
Successful Successful - Successful [Tested: 18]
4.35.E35 cosh z = cosh x cos y + i sinh x sin y 𝑧 𝑥 𝑦 𝑖 𝑥 𝑦 {\displaystyle{\displaystyle\cosh z=\cosh x\cos y+i\sinh x\sin y}}
\cosh@@{z} = \cosh@@{x}\cos@@{y}+i\sinh@@{x}\sin@@{y}

cosh(x + y*I) = cosh(x)*cos(y)+ I*sinh(x)*sin(y)
Cosh[x + y*I] == Cosh[x]*Cos[y]+ I*Sinh[x]*Sin[y]
Successful Successful - Successful [Tested: 18]
4.35.E36 tanh z = sinh ( 2 x ) + i sin ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) 𝑧 2 𝑥 𝑖 2 𝑦 2 𝑥 2 𝑦 {\displaystyle{\displaystyle\tanh z=\frac{\sinh\left(2x\right)+i\sin\left(2y% \right)}{\cosh\left(2x\right)+\cos\left(2y\right)}}}
\tanh@@{z} = \frac{\sinh@{2x}+i\sin@{2y}}{\cosh@{2x}+\cos@{2y}}

tanh(x + y*I) = (sinh(2*x)+ I*sin(2*y))/(cosh(2*x)+ cos(2*y))
Tanh[x + y*I] == Divide[Sinh[2*x]+ I*Sin[2*y],Cosh[2*x]+ Cos[2*y]]
Successful Successful - Successful [Tested: 18]
4.35.E37 coth z = sinh ( 2 x ) - i sin ( 2 y ) cosh ( 2 x ) - cos ( 2 y ) hyperbolic-cotangent 𝑧 2 𝑥 𝑖 2 𝑦 2 𝑥 2 𝑦 {\displaystyle{\displaystyle\coth z=\frac{\sinh\left(2x\right)-i\sin\left(2y% \right)}{\cosh\left(2x\right)-\cos\left(2y\right)}}}
\coth@@{z} = \frac{\sinh@{2x}-i\sin@{2y}}{\cosh@{2x}-\cos@{2y}}

coth(x + y*I) = (sinh(2*x)- I*sin(2*y))/(cosh(2*x)- cos(2*y))
Coth[x + y*I] == Divide[Sinh[2*x]- I*Sin[2*y],Cosh[2*x]- Cos[2*y]]
Successful Successful - Successful [Tested: 18]
4.35.E38 | sinh z | = ( sinh 2 x + sin 2 y ) 1 / 2 𝑧 superscript 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle|\sinh z|=({\sinh^{2}}x+{\sin^{2}}y)^{1/2}}}
|\sinh@@{z}| = (\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2}

abs(sinh(x + y*I)) = ((sinh(x))^(2)+ (sin(y))^(2))^(1/2)
Abs[Sinh[x + y*I]] == ((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.35.E38 ( sinh 2 x + sin 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 x ) - cos ( 2 y ) ) ) 1 / 2 superscript 2 𝑥 2 𝑦 1 2 superscript 1 2 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle({\sinh^{2}}x+{\sin^{2}}y)^{1/2}=\left(\tfrac{1}{2% }(\cosh\left(2x\right)-\cos\left(2y\right))\right)^{1/2}}}
(\sinh^{2}@@{x}+\sin^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}-\cos@{2y})\right)^{1/2}

((sinh(x))^(2)+ (sin(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)- cos(2*y)))^(1/2)
((Sinh[x])^(2)+ (Sin[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]- Cos[2*y]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.35.E39 | cosh z | = ( sinh 2 x + cos 2 y ) 1 / 2 𝑧 superscript 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle|\cosh z|=({\sinh^{2}}x+{\cos^{2}}y)^{1/2}}}
|\cosh@@{z}| = (\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2}

abs(cosh(x + y*I)) = ((sinh(x))^(2)+ (cos(y))^(2))^(1/2)
Abs[Cosh[x + y*I]] == ((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.35.E39 ( sinh 2 x + cos 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 x ) + cos ( 2 y ) ) ) 1 / 2 superscript 2 𝑥 2 𝑦 1 2 superscript 1 2 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle({\sinh^{2}}x+{\cos^{2}}y)^{1/2}=\left(\tfrac{1}{2% }(\cosh\left(2x\right)+\cos\left(2y\right))\right)^{1/2}}}
(\sinh^{2}@@{x}+\cos^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2x}+\cos@{2y})\right)^{1/2}

((sinh(x))^(2)+ (cos(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*x)+ cos(2*y)))^(1/2)
((Sinh[x])^(2)+ (Cos[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*x]+ Cos[2*y]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.35.E40 | tanh z | = ( cosh ( 2 x ) - cos ( 2 y ) cosh ( 2 x ) + cos ( 2 y ) ) 1 / 2 𝑧 superscript 2 𝑥 2 𝑦 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle|\tanh z|=\left(\frac{\cosh\left(2x\right)-\cos% \left(2y\right)}{\cosh\left(2x\right)+\cos\left(2y\right)}\right)^{1/2}}}
|\tanh@@{z}| = \left(\frac{\cosh@{2x}-\cos@{2y}}{\cosh@{2x}+\cos@{2y}}\right)^{1/2}

abs(tanh(x + y*I)) = ((cosh(2*x)- cos(2*y))/(cosh(2*x)+ cos(2*y)))^(1/2)
Abs[Tanh[x + y*I]] == (Divide[Cosh[2*x]- Cos[2*y],Cosh[2*x]+ Cos[2*y]])^(1/2)
Successful Failure - Successful [Tested: 18]
4.36.E1 sinh z = z n = 1 ( 1 + z 2 n 2 π 2 ) 𝑧 𝑧 superscript subscript product 𝑛 1 1 superscript 𝑧 2 superscript 𝑛 2 superscript 𝜋 2 {\displaystyle{\displaystyle\sinh z=z\prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{% n^{2}\pi^{2}}\right)}}
\sinh@@{z} = z\prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{n^{2}\pi^{2}}\right)

sinh(z) = z*product(1 +((z)^(2))/((n)^(2)* (Pi)^(2)), n = 1..infinity)
Sinh[z] == z*Product[1 +Divide[(z)^(2),(n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.36.E2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n - 1 ) 2 π 2 ) 𝑧 superscript subscript product 𝑛 1 1 4 superscript 𝑧 2 superscript 2 𝑛 1 2 superscript 𝜋 2 {\displaystyle{\displaystyle\cosh z=\prod_{n=1}^{\infty}\left(1+\frac{4z^{2}}{% (2n-1)^{2}\pi^{2}}\right)}}
\cosh@@{z} = \prod_{n=1}^{\infty}\left(1+\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)

cosh(z) = product(1 +(4*(z)^(2))/((2*n - 1)^(2)* (Pi)^(2)), n = 1..infinity)
Cosh[z] == Product[1 +Divide[4*(z)^(2),(2*n - 1)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.36.E3 coth z = 1 z + 2 z n = 1 1 z 2 + n 2 π 2 hyperbolic-cotangent 𝑧 1 𝑧 2 𝑧 superscript subscript 𝑛 1 1 superscript 𝑧 2 superscript 𝑛 2 superscript 𝜋 2 {\displaystyle{\displaystyle\coth z=\frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{% z^{2}+n^{2}\pi^{2}}}}
\coth@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}+n^{2}\pi^{2}}

coth(z) = (1)/(z)+ 2*z*sum((1)/((z)^(2)+ (n)^(2)* (Pi)^(2)), n = 1..infinity)
Coth[z] == Divide[1,z]+ 2*z*Sum[Divide[1,(z)^(2)+ (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.36.E4 csch 2 z = n = - 1 ( z - n π i ) 2 2 𝑧 superscript subscript 𝑛 1 superscript 𝑧 𝑛 𝜋 𝑖 2 {\displaystyle{\displaystyle{\operatorname{csch}^{2}}z=\sum_{n=-\infty}^{% \infty}\frac{1}{(z-n\pi i)^{2}}}}
\csch^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi i)^{2}}

(csch(z))^(2) = sum((1)/((z - n*Pi*I)^(2)), n = - infinity..infinity)
(Csch[z])^(2) == Sum[Divide[1,(z - n*Pi*I)^(2)], {n, - Infinity, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.36.E5 csch z = 1 z + 2 z n = 1 ( - 1 ) n z 2 + n 2 π 2 𝑧 1 𝑧 2 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 𝑧 2 superscript 𝑛 2 superscript 𝜋 2 {\displaystyle{\displaystyle\operatorname{csch}z=\frac{1}{z}+2z\sum_{n=1}^{% \infty}\frac{(-1)^{n}}{z^{2}+n^{2}\pi^{2}}}}
\csch@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}+n^{2}\pi^{2}}

csch(z) = (1)/(z)+ 2*z*sum(((- 1)^(n))/((z)^(2)+ (n)^(2)* (Pi)^(2)), n = 1..infinity)
Csch[z] == Divide[1,z]+ 2*z*Sum[Divide[(- 1)^(n),(z)^(2)+ (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.37.E1 Arcsinh z = 0 z d t ( 1 + t 2 ) 1 / 2 multivalued-hyperbolic-inverse-sine 𝑧 superscript subscript 0 𝑧 𝑡 superscript 1 superscript 𝑡 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsinh}z=\int_{0}^{z}\frac{\mathrm{% d}t}{(1+t^{2})^{1/2}}}}
\Asinh@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1+t^{2})^{1/2}}

Error
ArcSinh[z] == Integrate[Divide[1,(1 + (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 7]
4.37.E2 Arccosh z = 1 z d t ( t 2 - 1 ) 1 / 2 multivalued-hyperbolic-inverse-cosine 𝑧 superscript subscript 1 𝑧 𝑡 superscript superscript 𝑡 2 1 1 2 {\displaystyle{\displaystyle\operatorname{Arccosh}z=\int_{1}^{z}\frac{\mathrm{% d}t}{(t^{2}-1)^{1/2}}}}
\Acosh@@{z} = \int_{1}^{z}\frac{\diff{t}}{(t^{2}-1)^{1/2}}

Error
ArcCosh[z] == Integrate[Divide[1,((t)^(2)- 1)^(1/2)], {t, 1, z}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
4.37.E3 Arctanh z = 0 z d t 1 - t 2 multivalued-hyperbolic-inverse-tangent 𝑧 superscript subscript 0 𝑧 𝑡 1 superscript 𝑡 2 {\displaystyle{\displaystyle\operatorname{Arctanh}z=\int_{0}^{z}\frac{\mathrm{% d}t}{1-t^{2}}}}
\Atanh@@{z} = \int_{0}^{z}\frac{\diff{t}}{1-t^{2}}

Error
ArcTanh[z] == Integrate[Divide[1,1 - (t)^(2)], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 1]
4.37.E4 Arccsch z = Arcsinh ( 1 / z ) multivalued-hyperbolic-inverse-cosecant 𝑧 multivalued-hyperbolic-inverse-sine 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arccsch}z=\operatorname{Arcsinh}% \left(1/z\right)}}
\Acsch@@{z} = \Asinh@{1/z}

Error
ArcCsch[z] == ArcSinh[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.37.E5 Arcsech z = Arccosh ( 1 / z ) multivalued-hyperbolic-inverse-secant 𝑧 multivalued-hyperbolic-inverse-cosine 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arcsech}z=\operatorname{Arccosh}% \left(1/z\right)}}
\Asech@@{z} = \Acosh@{1/z}

Error
ArcSech[z] == ArcCosh[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.37.E6 Arccoth z = Arctanh ( 1 / z ) multivalued-hyperbolic-inverse-cotangent 𝑧 multivalued-hyperbolic-inverse-tangent 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arccoth}z=\operatorname{Arctanh}% \left(1/z\right)}}
\Acoth@@{z} = \Atanh@{1/z}

Error
ArcCoth[z] == ArcTanh[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.37.E7 arccsch z = arcsinh ( 1 / z ) hyperbolic-inverse-cosecant 𝑧 hyperbolic-inverse-sine 1 𝑧 {\displaystyle{\displaystyle\operatorname{arccsch}z=\operatorname{arcsinh}% \left(1/z\right)}}
\acsch@@{z} = \asinh@{1/z}

arccsch(z) = arcsinh(1/z)
ArcCsch[z] == ArcSinh[1/z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.37.E8 arcsech z = arccosh ( 1 / z ) hyperbolic-inverse-secant 𝑧 hyperbolic-inverse-cosine 1 𝑧 {\displaystyle{\displaystyle\operatorname{arcsech}z=\operatorname{arccosh}% \left(1/z\right)}}
\asech@@{z} = \acosh@{1/z}

arcsech(z) = arccosh(1/z)
ArcSech[z] == ArcCosh[1/z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.37.E9 arccoth z = arctanh ( 1 / z ) hyperbolic-inverse-cotangent 𝑧 hyperbolic-inverse-tangent 1 𝑧 {\displaystyle{\displaystyle\operatorname{arccoth}z=\operatorname{arctanh}% \left(1/z\right)}}
\acoth@@{z} = \atanh@{1/z}

arccoth(z) = arctanh(1/z)
ArcCoth[z] == ArcTanh[1/z]
Failure Successful Successful [Tested: 7] Successful [Tested: 1]
4.37.E10 arcsinh ( - z ) = - arcsinh z hyperbolic-inverse-sine 𝑧 hyperbolic-inverse-sine 𝑧 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(-z\right)=-% \operatorname{arcsinh}z}}
\asinh@{-z} = -\asinh@@{z}

arcsinh(- z) = - arcsinh(z)
ArcSinh[- z] == - ArcSinh[z]
Successful Successful - Successful [Tested: 7]
4.37.E11 arccosh ( - z ) = + π i + arccosh z hyperbolic-inverse-cosine 𝑧 𝜋 𝑖 hyperbolic-inverse-cosine 𝑧 {\displaystyle{\displaystyle\operatorname{arccosh}\left(-z\right)=+\pi i+% \operatorname{arccosh}z}}
\acosh@{-z} = +\pi i+\acosh@@{z}

arccosh(- z) = + Pi*I + arccosh(z)
ArcCosh[- z] == + Pi*I + ArcCosh[z]
Failure Failure
Failed [3 / 7]
Result: 0.-6.283185307*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, Im(z) = 1/2}

Result: 0.-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), Im(z) = 1/2}

Result: -2.094395103*I
Test Values: {z = .5, Im(z) = 1/2}

Failed [1 / 1]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[z, Complex[0, Rational[1, 2]]]}

4.37.E11 arccosh ( - z ) = - π i + arccosh z hyperbolic-inverse-cosine 𝑧 𝜋 𝑖 hyperbolic-inverse-cosine 𝑧 {\displaystyle{\displaystyle\operatorname{arccosh}\left(-z\right)=-\pi i+% \operatorname{arccosh}z}}
\acosh@{-z} = -\pi i+\acosh@@{z}

arccosh(- z) = - Pi*I + arccosh(z)
ArcCosh[- z] == - Pi*I + ArcCosh[z]
Failure Failure
Failed [5 / 7]
Result: 0.+6.283185307*I
Test Values: {z = 1/2-1/2*I*3^(1/2), Im(z) = 1/2}

Result: 0.+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, Im(z) = 1/2}

Result: 0.+6.283185308*I
Test Values: {z = 1.5, Im(z) = 1/2}

Result: 4.188790205*I
Test Values: {z = .5, Im(z) = 1/2}

... skip entries to safe data
Successful [Tested: 1]
4.37.E12 arctanh ( - z ) = - arctanh z hyperbolic-inverse-tangent 𝑧 hyperbolic-inverse-tangent 𝑧 {\displaystyle{\displaystyle\operatorname{arctanh}\left(-z\right)=-% \operatorname{arctanh}z}}
\atanh@{-z} = -\atanh@@{z}

arctanh(- z) = - arctanh(z)
ArcTanh[- z] == - ArcTanh[z]
Successful Successful - Successful [Tested: 1]
4.37.E13 arccsch ( - z ) = - arccsch z hyperbolic-inverse-cosecant 𝑧 hyperbolic-inverse-cosecant 𝑧 {\displaystyle{\displaystyle\operatorname{arccsch}\left(-z\right)=-% \operatorname{arccsch}z}}
\acsch@{-z} = -\acsch@@{z}

arccsch(- z) = - arccsch(z)
ArcCsch[- z] == - ArcCsch[z]
Successful Successful - Successful [Tested: 7]
4.37.E14 arcsech ( - z ) = - π i + arcsech z hyperbolic-inverse-secant 𝑧 𝜋 𝑖 hyperbolic-inverse-secant 𝑧 {\displaystyle{\displaystyle\operatorname{arcsech}\left(-z\right)=-\pi i+% \operatorname{arcsech}z}}
\asech@{-z} = -\pi i+\asech@@{z}

arcsech(- z) = - Pi*I + arcsech(z)
ArcSech[- z] == - Pi*I + ArcSech[z]
Failure Failure
Failed [5 / 7]
Result: 0.+6.283185307*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, Im(z) = 1/2}

Result: 0.+6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), Im(z) = 1/2}

Result: 4.601047966*I
Test Values: {z = 1.5, Im(z) = 1/2}

Result: 0.+6.283185308*I
Test Values: {z = .5, Im(z) = 1/2}

... skip entries to safe data
Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[z, Complex[0, Rational[1, 2]]]}

4.37.E14 arcsech ( - z ) = + π i + arcsech z hyperbolic-inverse-secant 𝑧 𝜋 𝑖 hyperbolic-inverse-secant 𝑧 {\displaystyle{\displaystyle\operatorname{arcsech}\left(-z\right)=+\pi i+% \operatorname{arcsech}z}}
\asech@{-z} = +\pi i+\asech@@{z}

arcsech(- z) = + Pi*I + arcsech(z)
ArcSech[- z] == + Pi*I + ArcSech[z]
Failure Failure
Failed [4 / 7]
Result: 0.-6.283185307*I
Test Values: {z = 1/2-1/2*I*3^(1/2), Im(z) = 1/2}

Result: 0.-6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, Im(z) = 1/2}

Result: -1.682137342*I
Test Values: {z = 1.5, Im(z) = 1/2}

Result: -2.094395103*I
Test Values: {z = 2, Im(z) = 1/2}

Successful [Tested: 1]
4.37.E15 arccoth ( - z ) = - arccoth z hyperbolic-inverse-cotangent 𝑧 hyperbolic-inverse-cotangent 𝑧 {\displaystyle{\displaystyle\operatorname{arccoth}\left(-z\right)=-% \operatorname{arccoth}z}}
\acoth@{-z} = -\acoth@@{z}

arccoth(- z) = - arccoth(z)
ArcCoth[- z] == - ArcCoth[z]
Failure Successful
Failed [1 / 7]
Result: 0.-3.141592654*I
Test Values: {z = .5, z = 1/2}

Successful [Tested: 1]
4.37.E16 arcsinh z = ln ( ( z 2 + 1 ) 1 / 2 + z ) hyperbolic-inverse-sine 𝑧 superscript superscript 𝑧 2 1 1 2 𝑧 {\displaystyle{\displaystyle\operatorname{arcsinh}z=\ln\left((z^{2}+1)^{1/2}+z% \right)}}
\asinh@@{z} = \ln@{(z^{2}+1)^{1/2}+z}

arcsinh(z) = ln(((z)^(2)+ 1)^(1/2)+ z)
ArcSinh[z] == Log[((z)^(2)+ 1)^(1/2)+ z]
Failure Successful Successful [Tested: 7] Successful [Tested: 1]
4.37.E17 arcsinh ( i y ) = 1 2 π i + ln ( ( y 2 - 1 ) 1 / 2 + y ) hyperbolic-inverse-sine 𝑖 𝑦 1 2 𝜋 𝑖 superscript superscript 𝑦 2 1 1 2 𝑦 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(iy\right)=\tfrac{1}{2}% \pi i+\ln\left((y^{2}-1)^{1/2}+y\right)}}
\asinh@{iy} = \tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}+y}

arcsinh(I*y) = (1)/(2)*Pi*I + ln(((y)^(2)- 1)^(1/2)+ y)
ArcSinh[I*y] == Divide[1,2]*Pi*I + Log[((y)^(2)- 1)^(1/2)+ y]
Failure Successful
Failed [4 / 6]
Result: .7e-9-6.283185308*I
Test Values: {y = -1.5, y = 3/2}

Result: -.1347500000e-10-4.188790205*I
Test Values: {y = -.5, y = 3/2}

Result: -.1347500000e-10-2.094395102*I
Test Values: {y = .5, y = 3/2}

Result: .2e-8-6.283185308*I
Test Values: {y = -2, y = 3/2}

Successful [Tested: 1]
4.37.E17 arcsinh ( i y ) = 1 2 π i - ln ( ( y 2 - 1 ) 1 / 2 + y ) hyperbolic-inverse-sine 𝑖 𝑦 1 2 𝜋 𝑖 superscript superscript 𝑦 2 1 1 2 𝑦 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(iy\right)=\tfrac{1}{2}% \pi i-\ln\left((y^{2}-1)^{1/2}+y\right)}}
\asinh@{iy} = \tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}+y}

arcsinh(I*y) = (1)/(2)*Pi*I - ln(((y)^(2)- 1)^(1/2)+ y)
ArcSinh[I*y] == Divide[1,2]*Pi*I - Log[((y)^(2)- 1)^(1/2)+ y]
Failure Failure
Failed [4 / 6]
Result: -1.924847301+0.*I
Test Values: {y = -1.5, y = 3/2}

Result: 1.924847300+0.*I
Test Values: {y = 1.5, y = 3/2}

Result: -2.633915796+0.*I
Test Values: {y = -2, y = 3/2}

Result: 2.633915794+0.*I
Test Values: {y = 2, y = 3/2}

Failed [1 / 1]
Result: Complex[1.9248473002384139, 0.0]
Test Values: {Rule[y, Rational[3, 2]]}

4.37.E18 arcsinh ( i y ) = - 1 2 π i + ln ( ( y 2 - 1 ) 1 / 2 - y ) hyperbolic-inverse-sine 𝑖 𝑦 1 2 𝜋 𝑖 superscript superscript 𝑦 2 1 1 2 𝑦 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(iy\right)=-\tfrac{1}{2% }\pi i+\ln\left((y^{2}-1)^{1/2}-y\right)}}
\asinh@{iy} = -\tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}-y}

arcsinh(I*y) = -(1)/(2)*Pi*I + ln(((y)^(2)- 1)^(1/2)- y)
ArcSinh[I*y] == -Divide[1,2]*Pi*I + Log[((y)^(2)- 1)^(1/2)- y]
Failure Failure
Failed [4 / 6]
Result: -1.924847300+0.*I
Test Values: {y = -1.5, y = -2}

Result: 1.924847301+0.*I
Test Values: {y = 1.5, y = -2}

Result: -2.633915794+0.*I
Test Values: {y = -2, y = -2}

Result: 2.633915796+0.*I
Test Values: {y = 2, y = -2}

Failed [1 / 1]
Result: Complex[-2.633915793849633, 0.0]
Test Values: {Rule[y, -2]}

4.37.E18 arcsinh ( i y ) = - 1 2 π i - ln ( ( y 2 - 1 ) 1 / 2 - y ) hyperbolic-inverse-sine 𝑖 𝑦 1 2 𝜋 𝑖 superscript superscript 𝑦 2 1 1 2 𝑦 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(iy\right)=-\tfrac{1}{2% }\pi i-\ln\left((y^{2}-1)^{1/2}-y\right)}}
\asinh@{iy} = -\tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}-y}

arcsinh(I*y) = -(1)/(2)*Pi*I - ln(((y)^(2)- 1)^(1/2)- y)
ArcSinh[I*y] == -Divide[1,2]*Pi*I - Log[((y)^(2)- 1)^(1/2)- y]
Failure Failure
Failed [4 / 6]
Result: -.7e-9+6.283185308*I
Test Values: {y = 1.5, y = -2}

Result: .1347500000e-10+2.094395102*I
Test Values: {y = -.5, y = -2}

Result: .1347500000e-10+4.188790205*I
Test Values: {y = .5, y = -2}

Result: -.2e-8+6.283185308*I
Test Values: {y = 2, y = -2}

Successful [Tested: 1]
4.37.E19 arccosh z = ln ( + ( z 2 - 1 ) 1 / 2 + z ) hyperbolic-inverse-cosine 𝑧 superscript superscript 𝑧 2 1 1 2 𝑧 {\displaystyle{\displaystyle\operatorname{arccosh}z=\ln\left(+(z^{2}-1)^{1/2}+% z\right)}}
\acosh@@{z} = \ln@{+(z^{2}-1)^{1/2}+z}

arccosh(z) = ln(+((z)^(2)- 1)^(1/2)+ z)
ArcCosh[z] == Log[+((z)^(2)- 1)^(1/2)+ z]
Failure Failure
Failed [2 / 7]
Result: 1.662885893+3.891061519*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 3/2}

Result: 1.316957897-4.712388980*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 3/2}

Successful [Tested: 1]
4.37.E19 arccosh z = ln ( - ( z 2 - 1 ) 1 / 2 + z ) hyperbolic-inverse-cosine 𝑧 superscript superscript 𝑧 2 1 1 2 𝑧 {\displaystyle{\displaystyle\operatorname{arccosh}z=\ln\left(-(z^{2}-1)^{1/2}+% z\right)}}
\acosh@@{z} = \ln@{-(z^{2}-1)^{1/2}+z}

arccosh(z) = ln(-((z)^(2)- 1)^(1/2)+ z)
ArcCosh[z] == Log[-((z)^(2)- 1)^(1/2)+ z]
Failure Failure
Failed [5 / 7]
Result: 1.316957897+1.570796326*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 3/2}

Result: 1.662885893-2.392123788*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 3/2}

Result: 1.924847301
Test Values: {z = 1.5, z = 3/2}

Result: -.1347500000e-10+2.094395102*I
Test Values: {z = .5, z = 3/2}

... skip entries to safe data
Failed [1 / 1]
Result: 1.9248473002384139
Test Values: {Rule[z, Rational[3, 2]]}

4.37.E20 arccosh ( i y ) = + 1 2 π i + ln ( ( y 2 + 1 ) 1 / 2 + y ) hyperbolic-inverse-cosine imaginary-unit 𝑦 1 2 𝜋 imaginary-unit superscript superscript 𝑦 2 1 1 2 𝑦 {\displaystyle{\displaystyle\operatorname{arccosh}\left(\mathrm{i}y\right)=+% \tfrac{1}{2}\pi\mathrm{i}+\ln\left((y^{2}+1)^{1/2}+y\right)}}
\acosh@{\iunit y} = +\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}+ y}

arccosh(I*y) = +(1)/(2)*Pi*I + ln(((y)^(2)+ 1)^(1/2)+ y)
ArcCosh[I*y] == +Divide[1,2]*Pi*I + Log[((y)^(2)+ 1)^(1/2)+ y]
Failure Failure
Failed [3 / 6]
Result: 2.389526433-3.141592654*I
Test Values: {y = -1.5, y = 1/2}

Result: .9624236498-3.141592654*I
Test Values: {y = -.5, y = 1/2}

Result: 2.887270952-3.141592654*I
Test Values: {y = -2, y = 1/2}

Successful [Tested: 1]
4.37.E20 arccosh ( i y ) = - 1 2 π i + ln ( ( y 2 + 1 ) 1 / 2 - y ) hyperbolic-inverse-cosine imaginary-unit 𝑦 1 2 𝜋 imaginary-unit superscript superscript 𝑦 2 1 1 2 𝑦 {\displaystyle{\displaystyle\operatorname{arccosh}\left(\mathrm{i}y\right)=-% \tfrac{1}{2}\pi\mathrm{i}+\ln\left((y^{2}+1)^{1/2}-y\right)}}
\acosh@{\iunit y} = -\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}- y}

arccosh(I*y) = -(1)/(2)*Pi*I + ln(((y)^(2)+ 1)^(1/2)- y)
ArcCosh[I*y] == -Divide[1,2]*Pi*I + Log[((y)^(2)+ 1)^(1/2)- y]
Failure Failure
Failed [3 / 6]
Result: 2.389526433+3.141592654*I
Test Values: {y = 1.5, y = 1/2}

Result: .9624236498+3.141592654*I
Test Values: {y = .5, y = 1/2}

Result: 2.887270952+3.141592654*I
Test Values: {y = 2, y = 1/2}

Failed [1 / 1]
Result: Complex[0.9624236501192068, 3.141592653589793]
Test Values: {Rule[y, Rational[1, 2]]}

4.37.E21 arccosh z = 2 ln ( ( z + 1 2 ) 1 / 2 + ( z - 1 2 ) 1 / 2 ) hyperbolic-inverse-cosine 𝑧 2 superscript 𝑧 1 2 1 2 superscript 𝑧 1 2 1 2 {\displaystyle{\displaystyle\operatorname{arccosh}z=2\ln\left(\left(\frac{z+1}% {2}\right)^{1/2}+\left(\frac{z-1}{2}\right)^{1/2}\right)}}
\acosh@@{z} = 2\ln@{\left(\frac{z+1}{2}\right)^{1/2}+\left(\frac{z-1}{2}\right)^{1/2}}

arccosh(z) = 2*ln(((z + 1)/(2))^(1/2)+((z - 1)/(2))^(1/2))
ArcCosh[z] == 2*Log[(Divide[z + 1,2])^(1/2)+(Divide[z - 1,2])^(1/2)]
Failure Failure Successful [Tested: 7] Successful [Tested: 1]
4.37.E22 arccosh x = + ln ( i ( 1 - x 2 ) 1 / 2 + x ) hyperbolic-inverse-cosine 𝑥 𝑖 superscript 1 superscript 𝑥 2 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccosh}x=+\ln\left(i(1-x^{2})^{1/2}% +x\right)}}
\acosh@@{x} = +\ln@{i(1-x^{2})^{1/2}+x}

arccosh(x) = + ln(I*(1 - (x)^(2))^(1/2)+ x)
ArcCosh[x] == + Log[I*(1 - (x)^(2))^(1/2)+ x]
Failure Failure
Failed [2 / 3]
Result: 1.924847301
Test Values: {x = 1.5, x = 1/2}

Result: 2.633915796
Test Values: {x = 2, x = 1/2}

Successful [Tested: 1]
4.37.E22 arccosh x = - ln ( i ( 1 - x 2 ) 1 / 2 + x ) hyperbolic-inverse-cosine 𝑥 𝑖 superscript 1 superscript 𝑥 2 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccosh}x=-\ln\left(i(1-x^{2})^{1/2}% +x\right)}}
\acosh@@{x} = -\ln@{i(1-x^{2})^{1/2}+x}

arccosh(x) = - ln(I*(1 - (x)^(2))^(1/2)+ x)
ArcCosh[x] == - Log[I*(1 - (x)^(2))^(1/2)+ x]
Failure Failure
Failed [1 / 3]
Result: .1347500000e-10+2.094395102*I
Test Values: {x = .5, x = 1/2}

Failed [1 / 1]
Result: Complex[0.0, 2.0943951023931953]
Test Values: {Rule[x, Rational[1, 2]]}

4.37.E23 arccosh x = + π i + ln ( ( x 2 - 1 ) 1 / 2 - x ) hyperbolic-inverse-cosine 𝑥 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccosh}x=+\pi i+\ln\left((x^{2}-1)^% {1/2}-x\right)}}
\acosh@@{x} = +\pi i+\ln@{(x^{2}-1)^{1/2}-x}

arccosh(x) = + Pi*I + ln(((x)^(2)- 1)^(1/2)- x)
ArcCosh[x] == + Pi*I + Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [3 / 3]
Result: 1.924847301-6.283185308*I
Test Values: {x = 1.5, x = -2}

Result: -.1347500000e-10-4.188790205*I
Test Values: {x = .5, x = -2}

Result: 2.633915796-6.283185308*I
Test Values: {x = 2, x = -2}

Successful [Tested: 1]
4.37.E23 arccosh x = - π i + ln ( ( x 2 - 1 ) 1 / 2 - x ) hyperbolic-inverse-cosine 𝑥 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccosh}x=-\pi i+\ln\left((x^{2}-1)^% {1/2}-x\right)}}
\acosh@@{x} = -\pi i+\ln@{(x^{2}-1)^{1/2}-x}

arccosh(x) = - Pi*I + ln(((x)^(2)- 1)^(1/2)- x)
ArcCosh[x] == - Pi*I + Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [3 / 3]
Result: 1.924847301+0.*I
Test Values: {x = 1.5, x = -2}

Result: -.1347500000e-10+2.094395103*I
Test Values: {x = .5, x = -2}

Result: 2.633915796+0.*I
Test Values: {x = 2, x = -2}

Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[x, -2]}

4.37.E24 arctanh z = 1 2 ln ( 1 + z 1 - z ) hyperbolic-inverse-tangent 𝑧 1 2 1 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{arctanh}z=\tfrac{1}{2}\ln\left(\frac% {1+z}{1-z}\right)}}
\atanh@@{z} = \tfrac{1}{2}\ln@{\frac{1+z}{1-z}}

arctanh(z) = (1)/(2)*ln((1 + z)/(1 - z))
ArcTanh[z] == Divide[1,2]*Log[Divide[1 + z,1 - z]]
Failure Failure
Failed [2 / 7]
Result: .2e-9-3.141592654*I
Test Values: {z = 1.5, z = 1/2}

Result: -.2e-9-3.141592654*I
Test Values: {z = 2, z = 1/2}

Successful [Tested: 1]
4.37.E25 arctanh x = + 1 2 π i + 1 2 ln ( x + 1 x - 1 ) hyperbolic-inverse-tangent 𝑥 1 2 𝜋 𝑖 1 2 𝑥 1 𝑥 1 {\displaystyle{\displaystyle\operatorname{arctanh}x=+\tfrac{1}{2}\pi i+\tfrac{% 1}{2}\ln\left(\frac{x+1}{x-1}\right)}}
\atanh@@{x} = +\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}}

arctanh(x) = +(1)/(2)*Pi*I +(1)/(2)*ln((x + 1)/(x - 1))
ArcTanh[x] == +Divide[1,2]*Pi*I +Divide[1,2]*Log[Divide[x + 1,x - 1]]
Failure Failure
Failed [3 / 3]
Result: .2e-9-3.141592654*I
Test Values: {x = 1.5, x = -3/2}

Result: -.2e-9-3.141592654*I
Test Values: {x = .5, x = -3/2}

Result: -.2e-9-3.141592654*I
Test Values: {x = 2, x = -3/2}

Successful [Tested: 1]
4.37.E25 arctanh x = - 1 2 π i + 1 2 ln ( x + 1 x - 1 ) hyperbolic-inverse-tangent 𝑥 1 2 𝜋 𝑖 1 2 𝑥 1 𝑥 1 {\displaystyle{\displaystyle\operatorname{arctanh}x=-\tfrac{1}{2}\pi i+\tfrac{% 1}{2}\ln\left(\frac{x+1}{x-1}\right)}}
\atanh@@{x} = -\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}}

arctanh(x) = -(1)/(2)*Pi*I +(1)/(2)*ln((x + 1)/(x - 1))
ArcTanh[x] == -Divide[1,2]*Pi*I +Divide[1,2]*Log[Divide[x + 1,x - 1]]
Failure Failure Successful [Tested: 3]
Failed [1 / 1]
Result: Complex[-1.1102230246251565*^-16, 3.141592653589793]
Test Values: {Rule[x, Rational[-3, 2]]}

4.37.E26 z = sinh w 𝑧 𝑤 {\displaystyle{\displaystyle z=\sinh w}}
z = \sinh@@{w}

z = sinh(w)
z == Sinh[w]
Failure Failure
Failed [70 / 70]
Result: .73886869e-2-.1707313589*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.358636717+.1952940451*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.3586367171-1.536756763*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.724662121-1.170731359*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.007388686967293889, -0.17073135880721174]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.3586367168171445, 0.19529404497722702]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.37.E27 z = cosh w 𝑧 𝑤 {\displaystyle{\displaystyle z=\cosh w}}
z = \cosh@@{w}

z = cosh(w)
z == Cosh[w]
Failure Failure
Failed [70 / 70]
Result: -.3617401130+.309246236e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.727765517+.3969500276*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.7277655170-1.335100780*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -2.093790921-.9690753764*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[-0.3617401130796717, 0.030924623731496126]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.7277655168641102, 0.3969500275159349]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.37.E28 z = tanh w 𝑧 𝑤 {\displaystyle{\displaystyle z=\tanh w}}
z = \tanh@@{w}

z = tanh(w)
z == Tanh[w]
Failure Failure
Failed [70 / 70]
Result: .736226475e-1+.2564398629*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.292402756+.6224652669*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.2924027565-1.109585541*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.658428160-.7435601371*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.07362264736640245, 0.25643986284286624]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.292402756418036, 0.622465266627305]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.37.E29 w = Arcsinh z 𝑤 multivalued-hyperbolic-inverse-sine 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arcsinh}z}}
w = \Asinh@@{z}

Error
w == ArcSinh[z]
Missing Macro Error Failure -
Failed [70 / 70]
Result: Complex[0.03458245825512818, 0.12526556729125993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.524504352246847, -0.28539816339744856]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.37.E29 Arcsinh z = ( - 1 ) k arcsinh z + k π i multivalued-hyperbolic-inverse-sine 𝑧 superscript 1 𝑘 hyperbolic-inverse-sine 𝑧 𝑘 𝜋 𝑖 {\displaystyle{\displaystyle\operatorname{Arcsinh}z=(-1)^{k}\operatorname{% arcsinh}z+k\pi i}}
\Asinh@@{z} = (-1)^{k}\asinh@@{z}+k\pi i

Error
ArcSinh[z] == (- 1)^(k)* ArcSinh[z]+ k*Pi*I
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[1.662885891058621, -2.392123788172313]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.37.E30 w = Arccosh z 𝑤 multivalued-hyperbolic-inverse-cosine 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arccosh}z}}
w = \Acosh@@{z}

Error
w == ArcCosh[z]
Missing Macro Error Failure -
Failed [70 / 70]
Result: Complex[0.20754645532203042, -0.28539816339744833]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.03458245825512796, -1.4455307595036366]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.37.E30 Arccosh z = + arccosh z + 2 k π i multivalued-hyperbolic-inverse-cosine 𝑧 hyperbolic-inverse-cosine 𝑧 2 𝑘 𝜋 𝑖 {\displaystyle{\displaystyle\operatorname{Arccosh}z=+\operatorname{arccosh}z+2% k\pi i}}
\Acosh@@{z} = +\acosh@@{z}+2k\pi i

Error
ArcCosh[z] == + ArcCosh[z]+ 2*k*Pi*I
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.37.E30 Arccosh z = - arccosh z + 2 k π i multivalued-hyperbolic-inverse-cosine 𝑧 hyperbolic-inverse-cosine 𝑧 2 𝑘 𝜋 𝑖 {\displaystyle{\displaystyle\operatorname{Arccosh}z=-\operatorname{arccosh}z+2% k\pi i}}
\Acosh@@{z} = -\acosh@@{z}+2k\pi i

Error
ArcCosh[z] == - ArcCosh[z]+ 2*k*Pi*I
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[1.3169578969248166, -4.71238898038469]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.3169578969248166, -10.995574287564276]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.37.E31 w = Arctanh z 𝑤 multivalued-hyperbolic-inverse-tangent 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arctanh}z}}
w = \Atanh@@{z}

Error
w == ArcTanh[z]
Missing Macro Error Failure -
Failed [10 / 10]
Result: Complex[0.3167192594503839, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]}

Result: Complex[-1.0493061443340546, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]}

... skip entries to safe data
4.37.E31 Arctanh z = arctanh z + k π i multivalued-hyperbolic-inverse-tangent 𝑧 hyperbolic-inverse-tangent 𝑧 𝑘 𝜋 𝑖 {\displaystyle{\displaystyle\operatorname{Arctanh}z=\operatorname{arctanh}z+k% \pi i}}
\Atanh@@{z} = \atanh@@{z}+k\pi i

Error
ArcTanh[z] == ArcTanh[z]+ k*Pi*I
Missing Macro Error Failure -
Failed [3 / 3]
Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]}

Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]}

... skip entries to safe data
4.38.E4 arccosh z = ( 2 ( z - 1 ) ) 1 / 2 ( 1 + n = 1 ( - 1 ) n 1 3 5 ( 2 n - 1 ) 2 2 n n ! ( 2 n + 1 ) ( z - 1 ) n ) hyperbolic-inverse-cosine 𝑧 superscript 2 𝑧 1 1 2 1 superscript subscript 𝑛 1 superscript 1 𝑛 1 3 5 2 𝑛 1 superscript 2 2 𝑛 𝑛 2 𝑛 1 superscript 𝑧 1 𝑛 {\displaystyle{\displaystyle\operatorname{arccosh}z=(2(z-1))^{1/2}\*{\left(1+% \sum_{n=1}^{\infty}(-1)^{n}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}n!(2n+1)}(% z-1)^{n}\right)}}}
\acosh@@{z} = (2(z-1))^{1/2}\*{\left(1+\sum_{n=1}^{\infty}(-1)^{n}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}n!(2n+1)}(z-1)^{n}\right)}
z > 0 , | z - 1 | 2 formulae-sequence 𝑧 0 𝑧 1 2 {\displaystyle{\displaystyle\Re z>0,|z-1|\leq 2}}
arccosh(z) = (2*(z - 1))^(1/2)*(1 + sum((- 1)^(n)*(1 * 3 * 5*(2*n - 1))/((2)^(2*n)* factorial(n)*(2*n + 1))*(z - 1)^(n), n = 1..infinity))
ArcCosh[z] == (2*(z - 1))^(1/2)*(1 + Sum[(- 1)^(n)*Divide[1 * 3 * 5*(2*n - 1),(2)^(2*n)* (n)!*(2*n + 1)]*(z - 1)^(n), {n, 1, Infinity}, GenerateConditions->None])
Failure Failure
Failed [5 / 5]
Result: -.5552108774+.3065228369*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -1.819822265-.3498215011*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: .5204832489
Test Values: {z = 1.5}

Result: -.651724541*I
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 5]
Result: Complex[-0.5552108781095244, 0.30652283644847583]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.8198222655846492, -0.34982149976378074]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.38.E8 x 2 - y 2 = 1 2 superscript 𝑥 2 superscript 𝑦 2 1 2 {\displaystyle{\displaystyle x^{2}-y^{2}=\tfrac{1}{2}}}
x^{2}-y^{2} = \tfrac{1}{2}

(x)^(2)- (y)^(2) = (1)/(2)
(x)^(2)- (y)^(2) == Divide[1,2]
Skipped - no semantic math Skipped - no semantic math - -
4.38.E9 d d z arcsinh z = ( 1 + z 2 ) - 1 / 2 derivative 𝑧 hyperbolic-inverse-sine 𝑧 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arcsinh}z=(1+z^{2})^{-1/2}}}
\deriv{}{z}\asinh@@{z} = (1+z^{2})^{-1/2}

diff(arcsinh(z), z) = (1 + (z)^(2))^(- 1/2)
D[ArcSinh[z], z] == (1 + (z)^(2))^(- 1/2)
Successful Successful - Successful [Tested: 7]
4.38.E10 d d z arccosh z = + ( z 2 - 1 ) - 1 / 2 derivative 𝑧 hyperbolic-inverse-cosine 𝑧 superscript superscript 𝑧 2 1 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arccosh}z=+(z^{2}-1)^{-1/2}}}
\deriv{}{z}\acosh@@{z} = +(z^{2}-1)^{-1/2}

diff(arccosh(z), z) = +((z)^(2)- 1)^(- 1/2)
D[ArcCosh[z], z] == +((z)^(2)- 1)^(- 1/2)
Failure Failure
Failed [2 / 7]
Result: -.3933198932-1.467889825*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: -1.000000000+1.732050808*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

Successful [Tested: 1]
4.38.E10 d d z arccosh z = - ( z 2 - 1 ) - 1 / 2 derivative 𝑧 hyperbolic-inverse-cosine 𝑧 superscript superscript 𝑧 2 1 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arccosh}z=-(z^{2}-1)^{-1/2}}}
\deriv{}{z}\acosh@@{z} = -(z^{2}-1)^{-1/2}

diff(arccosh(z), z) = -((z)^(2)- 1)^(- 1/2)
D[ArcCosh[z], z] == -((z)^(2)- 1)^(- 1/2)
Failure Failure
Failed [5 / 7]
Result: 1.000000000-1.732050808*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}

Result: .3933198932+1.467889825*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}

Result: 1.788854382
Test Values: {z = 1.5, z = 1/2}

Result: -2.309401076*I
Test Values: {z = .5, z = 1/2}

... skip entries to safe data
Failed [1 / 1]
Result: Complex[0.0, -2.3094010767585034]
Test Values: {Rule[z, Rational[1, 2]]}

4.38.E11 d d z arctanh z = 1 1 - z 2 derivative 𝑧 hyperbolic-inverse-tangent 𝑧 1 1 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arctanh}z=\frac{1}{1-z^{2}}}}
\deriv{}{z}\atanh@@{z} = \frac{1}{1-z^{2}}

diff(arctanh(z), z) = (1)/(1 - (z)^(2))
D[ArcTanh[z], z] == Divide[1,1 - (z)^(2)]
Successful Successful - Successful [Tested: 7]
4.38.E12 d d z arccsch z = - 1 z ( 1 + z 2 ) 1 / 2 derivative 𝑧 hyperbolic-inverse-cosecant 𝑧 1 𝑧 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arccsch}z=-\frac{1}{z(1+z^{2})^{1/2}}}}
\deriv{}{z}\acsch@@{z} = -\frac{1}{z(1+z^{2})^{1/2}}

diff(arccsch(z), z) = -(1)/(z*(1 + (z)^(2))^(1/2))
D[ArcCsch[z], z] == -Divide[1,z*(1 + (z)^(2))^(1/2)]
Failure Failure
Failed [2 / 7]
Result: .6696152420e-9-2.000000000*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: -1.074569932+1.074569932*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

Successful [Tested: 1]
4.38.E12 d d z arccsch z = + 1 z ( 1 + z 2 ) 1 / 2 derivative 𝑧 hyperbolic-inverse-cosecant 𝑧 1 𝑧 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arccsch}z=+\frac{1}{z(1+z^{2})^{1/2}}}}
\deriv{}{z}\acsch@@{z} = +\frac{1}{z(1+z^{2})^{1/2}}

diff(arccsch(z), z) = +(1)/(z*(1 + (z)^(2))^(1/2))
D[ArcCsch[z], z] == +Divide[1,z*(1 + (z)^(2))^(1/2)]
Failure Failure
Failed [5 / 7]
Result: -1.074569932+1.074569932*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}

Result: .6696152420e-9-2.000000000*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}

Result: -.7396002616
Test Values: {z = 1.5, z = 1/2}

Result: -3.577708764
Test Values: {z = .5, z = 1/2}

... skip entries to safe data
Failed [1 / 1]
Result: -3.5777087639996634
Test Values: {Rule[z, Rational[1, 2]]}

4.38.E13 d d z arcsech z = - 1 z ( 1 - z 2 ) 1 / 2 derivative 𝑧 hyperbolic-inverse-secant 𝑧 1 𝑧 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arcsech}z=-\frac{1}{z(1-z^{2})^{1/2}}}}
\deriv{}{z}\asech@@{z} = -\frac{1}{z(1-z^{2})^{1/2}}

diff(arcsech(z), z) = -(1)/(z*(1 - (z)^(2))^(1/2))
D[ArcSech[z], z] == -Divide[1,z*(1 - (z)^(2))^(1/2)]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.38.E14 d d z arccoth z = 1 1 - z 2 derivative 𝑧 hyperbolic-inverse-cotangent 𝑧 1 1 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{% arccoth}z=\frac{1}{1-z^{2}}}}
\deriv{}{z}\acoth@@{z} = \frac{1}{1-z^{2}}

diff(arccoth(z), z) = (1)/(1 - (z)^(2))
D[ArcCoth[z], z] == Divide[1,1 - (z)^(2)]
Successful Successful - Successful [Tested: 7]
4.38.E15 Arcsinh u + Arcsinh v = Arcsinh ( u ( 1 + v 2 ) 1 / 2 + v ( 1 + u 2 ) 1 / 2 ) multivalued-hyperbolic-inverse-sine 𝑢 multivalued-hyperbolic-inverse-sine 𝑣 multivalued-hyperbolic-inverse-sine 𝑢 superscript 1 superscript 𝑣 2 1 2 𝑣 superscript 1 superscript 𝑢 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsinh}u+\operatorname{Arcsinh}v=% \operatorname{Arcsinh}\left(u(1+v^{2})^{1/2}+v(1+u^{2})^{1/2}\right)}}
\Asinh@@{u}+\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}+ v(1+u^{2})^{1/2}}

Error
ArcSinh[u]+ ArcSinh[v] == ArcSinh[u*(1 + (v)^(2))^(1/2)+ v*(1 + (u)^(2))^(1/2)]
Missing Macro Error Failure -
Failed [1 / 100]
Result: Complex[-2.633915793849633, 4.440892098500626*^-16]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

4.38.E15 Arcsinh u - Arcsinh v = Arcsinh ( u ( 1 + v 2 ) 1 / 2 - v ( 1 + u 2 ) 1 / 2 ) multivalued-hyperbolic-inverse-sine 𝑢 multivalued-hyperbolic-inverse-sine 𝑣 multivalued-hyperbolic-inverse-sine 𝑢 superscript 1 superscript 𝑣 2 1 2 𝑣 superscript 1 superscript 𝑢 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsinh}u-\operatorname{Arcsinh}v=% \operatorname{Arcsinh}\left(u(1+v^{2})^{1/2}-v(1+u^{2})^{1/2}\right)}}
\Asinh@@{u}-\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}- v(1+u^{2})^{1/2}}

Error
ArcSinh[u]- ArcSinh[v] == ArcSinh[u*(1 + (v)^(2))^(1/2)- v*(1 + (u)^(2))^(1/2)]
Missing Macro Error Failure - Successful [Tested: 100]
4.38.E16 Arccosh u + Arccosh v = Arccosh ( u v + ( ( u 2 - 1 ) ( v 2 - 1 ) ) 1 / 2 ) multivalued-hyperbolic-inverse-cosine 𝑢 multivalued-hyperbolic-inverse-cosine 𝑣 multivalued-hyperbolic-inverse-cosine 𝑢 𝑣 superscript superscript 𝑢 2 1 superscript 𝑣 2 1 1 2 {\displaystyle{\displaystyle\operatorname{Arccosh}u+\operatorname{Arccosh}v=% \operatorname{Arccosh}\left(uv+((u^{2}-1)(v^{2}-1))^{1/2}\right)}}
\Acosh@@{u}+\Acosh@@{v} = \Acosh@{uv+((u^{2}-1)(v^{2}-1))^{1/2}}

Error
ArcCosh[u]+ ArcCosh[v] == ArcCosh[u*v +(((u)^(2)- 1)*((v)^(2)- 1))^(1/2)]
Missing Macro Error Failure -
Failed [60 / 100]
Result: Complex[1.3169578969248166, 1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.316957896924817, 1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.38.E16 Arccosh u - Arccosh v = Arccosh ( u v - ( ( u 2 - 1 ) ( v 2 - 1 ) ) 1 / 2 ) multivalued-hyperbolic-inverse-cosine 𝑢 multivalued-hyperbolic-inverse-cosine 𝑣 multivalued-hyperbolic-inverse-cosine 𝑢 𝑣 superscript superscript 𝑢 2 1 superscript 𝑣 2 1 1 2 {\displaystyle{\displaystyle\operatorname{Arccosh}u-\operatorname{Arccosh}v=% \operatorname{Arccosh}\left(uv-((u^{2}-1)(v^{2}-1))^{1/2}\right)}}
\Acosh@@{u}-\Acosh@@{v} = \Acosh@{uv-((u^{2}-1)(v^{2}-1))^{1/2}}

Error
ArcCosh[u]- ArcCosh[v] == ArcCosh[u*v -(((u)^(2)- 1)*((v)^(2)- 1))^(1/2)]
Missing Macro Error Failure -
Failed [80 / 100]
Result: Complex[-1.3169578969248166, -1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.6628858910586213, -3.8910615190072733]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.38.E17 Arctanh u + Arctanh v = Arctanh ( u + v 1 + u v ) multivalued-hyperbolic-inverse-tangent 𝑢 multivalued-hyperbolic-inverse-tangent 𝑣 multivalued-hyperbolic-inverse-tangent 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\operatorname{Arctanh}u+\operatorname{Arctanh}v=% \operatorname{Arctanh}\left(\frac{u+v}{1+uv}\right)}}
\Atanh@@{u}+\Atanh@@{v} = \Atanh@{\frac{u+ v}{1+ uv}}

Error
ArcTanh[u]+ ArcTanh[v] == ArcTanh[Divide[u + v,1 + u*v]]
Missing Macro Error Failure - Successful [Tested: 1]
4.38.E17 Arctanh u - Arctanh v = Arctanh ( u - v 1 - u v ) multivalued-hyperbolic-inverse-tangent 𝑢 multivalued-hyperbolic-inverse-tangent 𝑣 multivalued-hyperbolic-inverse-tangent 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\operatorname{Arctanh}u-\operatorname{Arctanh}v=% \operatorname{Arctanh}\left(\frac{u-v}{1-uv}\right)}}
\Atanh@@{u}-\Atanh@@{v} = \Atanh@{\frac{u- v}{1- uv}}

Error
ArcTanh[u]- ArcTanh[v] == ArcTanh[Divide[u - v,1 - u*v]]
Missing Macro Error Failure - Successful [Tested: 1]
4.38.E18 Arcsinh u + Arccosh v = Arcsinh ( u v + ( ( 1 + u 2 ) ( v 2 - 1 ) ) 1 / 2 ) multivalued-hyperbolic-inverse-sine 𝑢 multivalued-hyperbolic-inverse-cosine 𝑣 multivalued-hyperbolic-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 superscript 𝑣 2 1 1 2 {\displaystyle{\displaystyle\operatorname{Arcsinh}u+\operatorname{Arccosh}v=% \operatorname{Arcsinh}\left(uv+((1+u^{2})(v^{2}-1))^{1/2}\right)}}
\Asinh@@{u}+\Acosh@@{v} = \Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}}

Error
ArcSinh[u]+ ArcCosh[v] == ArcSinh[u*v +((1 + (u)^(2))*((v)^(2)- 1))^(1/2)]
Missing Macro Error Failure -
Failed [53 / 100]
Result: Complex[1.66288587615746, 3.891061504106112]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.6628858910586204, -2.3921237881723125]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.38.E18 Arcsinh u - Arccosh v = Arcsinh ( u v - ( ( 1 + u 2 ) ( v 2 - 1 ) ) 1 / 2 ) multivalued-hyperbolic-inverse-sine 𝑢 multivalued-hyperbolic-inverse-cosine 𝑣 multivalued-hyperbolic-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 superscript 𝑣 2 1 1 2 {\displaystyle{\displaystyle\operatorname{Arcsinh}u-\operatorname{Arccosh}v=% \operatorname{Arcsinh}\left(uv-((1+u^{2})(v^{2}-1))^{1/2}\right)}}
\Asinh@@{u}-\Acosh@@{v} = \Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}}

Error
ArcSinh[u]- ArcCosh[v] == ArcSinh[u*v -((1 + (u)^(2))*((v)^(2)- 1))^(1/2)]
Missing Macro Error Failure -
Failed [53 / 100]
Result: Complex[1.6628858910586208, -2.392123788172313]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.6628858910586208, 3.8910615190072733]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.38.E18 Arcsinh ( u v + ( ( 1 + u 2 ) ( v 2 - 1 ) ) 1 / 2 ) = Arccosh ( v ( 1 + u 2 ) 1 / 2 + u ( v 2 - 1 ) 1 / 2 ) multivalued-hyperbolic-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 superscript 𝑣 2 1 1 2 multivalued-hyperbolic-inverse-cosine 𝑣 superscript 1 superscript 𝑢 2 1 2 𝑢 superscript superscript 𝑣 2 1 1 2 {\displaystyle{\displaystyle\operatorname{Arcsinh}\left(uv+((1+u^{2})(v^{2}-1)% )^{1/2}\right)=\operatorname{Arccosh}\left(v(1+u^{2})^{1/2}+u(v^{2}-1)^{1/2}% \right)}}
\Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}+ u(v^{2}-1)^{1/2}}

Error
ArcSinh[u*v +((1 + (u)^(2))*((v)^(2)- 1))^(1/2)] == ArcCosh[v*(1 + (u)^(2))^(1/2)+ u*((v)^(2)- 1)^(1/2)]
Missing Macro Error Failure -
Failed [65 / 100]
Result: Complex[1.4901161193847656*^-8, -3.141592638688632]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.34592799413380415, -2.320265192212377]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.38.E18 Arcsinh ( u v - ( ( 1 + u 2 ) ( v 2 - 1 ) ) 1 / 2 ) = Arccosh ( v ( 1 + u 2 ) 1 / 2 - u ( v 2 - 1 ) 1 / 2 ) multivalued-hyperbolic-inverse-sine 𝑢 𝑣 superscript 1 superscript 𝑢 2 superscript 𝑣 2 1 1 2 multivalued-hyperbolic-inverse-cosine 𝑣 superscript 1 superscript 𝑢 2 1 2 𝑢 superscript superscript 𝑣 2 1 1 2 {\displaystyle{\displaystyle\operatorname{Arcsinh}\left(uv-((1+u^{2})(v^{2}-1)% )^{1/2}\right)=\operatorname{Arccosh}\left(v(1+u^{2})^{1/2}-u(v^{2}-1)^{1/2}% \right)}}
\Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}- u(v^{2}-1)^{1/2}}

Error
ArcSinh[u*v -((1 + (u)^(2))*((v)^(2)- 1))^(1/2)] == ArcCosh[v*(1 + (u)^(2))^(1/2)- u*((v)^(2)- 1)^(1/2)]
Missing Macro Error Failure -
Failed [86 / 100]
Result: Complex[-3.325771782117242, -1.4989377308349603]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-2.9798437879834374, 0.8213274613774169]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.38.E19 Arctanh u + Arccoth v = Arctanh ( u v + 1 v + u ) multivalued-hyperbolic-inverse-tangent 𝑢 multivalued-hyperbolic-inverse-cotangent 𝑣 multivalued-hyperbolic-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 {\displaystyle{\displaystyle\operatorname{Arctanh}u+\operatorname{Arccoth}v=% \operatorname{Arctanh}\left(\frac{uv+1}{v+u}\right)}}
\Atanh@@{u}+\Acoth@@{v} = \Atanh@{\frac{uv+ 1}{v+ u}}

Error
ArcTanh[u]+ ArcCoth[v] == ArcTanh[Divide[u*v + 1,v + u]]
Missing Macro Error Failure -
Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, -0.5]}

4.38.E19 Arctanh u - Arccoth v = Arctanh ( u v - 1 v - u ) multivalued-hyperbolic-inverse-tangent 𝑢 multivalued-hyperbolic-inverse-cotangent 𝑣 multivalued-hyperbolic-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 {\displaystyle{\displaystyle\operatorname{Arctanh}u-\operatorname{Arccoth}v=% \operatorname{Arctanh}\left(\frac{uv-1}{v-u}\right)}}
\Atanh@@{u}-\Acoth@@{v} = \Atanh@{\frac{uv- 1}{v- u}}

Error
ArcTanh[u]- ArcCoth[v] == ArcTanh[Divide[u*v - 1,v - u]]
Missing Macro Error Failure -
Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, 0.5]}

4.38.E19 Arctanh ( u v + 1 v + u ) = Arccoth ( v + u u v + 1 ) multivalued-hyperbolic-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 multivalued-hyperbolic-inverse-cotangent 𝑣 𝑢 𝑢 𝑣 1 {\displaystyle{\displaystyle\operatorname{Arctanh}\left(\frac{uv+1}{v+u}\right% )=\operatorname{Arccoth}\left(\frac{v+u}{uv+1}\right)}}
\Atanh@{\frac{uv+ 1}{v+ u}} = \Acoth@{\frac{v+ u}{uv+ 1}}

Error
ArcTanh[Divide[u*v + 1,v + u]] == ArcCoth[Divide[v + u,u*v + 1]]
Missing Macro Error Successful -
Failed [8 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.38.E19 Arctanh ( u v - 1 v - u ) = Arccoth ( v - u u v - 1 ) multivalued-hyperbolic-inverse-tangent 𝑢 𝑣 1 𝑣 𝑢 multivalued-hyperbolic-inverse-cotangent 𝑣 𝑢 𝑢 𝑣 1 {\displaystyle{\displaystyle\operatorname{Arctanh}\left(\frac{uv-1}{v-u}\right% )=\operatorname{Arccoth}\left(\frac{v-u}{uv-1}\right)}}
\Atanh@{\frac{uv- 1}{v- u}} = \Acoth@{\frac{v- u}{uv- 1}}

Error
ArcTanh[Divide[u*v - 1,v - u]] == ArcCoth[Divide[v - u,u*v - 1]]
Missing Macro Error Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.40.E1 sinh x d x = cosh x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\sinh x\mathrm{d}x=\cosh x}}
\int\sinh@@{x}\diff{x} = \cosh@@{x}

int(sinh(x), x) = cosh(x)
Integrate[Sinh[x], x, GenerateConditions->None] == Cosh[x]
Successful Successful - Successful [Tested: 3]
4.40.E2 cosh x d x = sinh x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\cosh x\mathrm{d}x=\sinh x}}
\int\cosh@@{x}\diff{x} = \sinh@@{x}

int(cosh(x), x) = sinh(x)
Integrate[Cosh[x], x, GenerateConditions->None] == Sinh[x]
Successful Successful - Successful [Tested: 3]
4.40.E3 tanh x d x = ln ( cosh x ) 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\tanh x\mathrm{d}x=\ln\left(\cosh x\right)}}
\int\tanh@@{x}\diff{x} = \ln@{\cosh@@{x}}

int(tanh(x), x) = ln(cosh(x))
Integrate[Tanh[x], x, GenerateConditions->None] == Log[Cosh[x]]
Successful Successful - Successful [Tested: 3]
4.40.E4 csch x d x = ln ( tanh ( 1 2 x ) ) 𝑥 𝑥 1 2 𝑥 {\displaystyle{\displaystyle\int\operatorname{csch}x\mathrm{d}x=\ln\left(\tanh% \left(\tfrac{1}{2}x\right)\right)}}
\int\csch@@{x}\diff{x} = \ln@{\tanh@{\tfrac{1}{2}x}}
0 < x , x < formulae-sequence 0 𝑥 𝑥 {\displaystyle{\displaystyle 0<x,x<\infty}}
int(csch(x), x) = ln(tanh((1)/(2)*x))
Integrate[Csch[x], x, GenerateConditions->None] == Log[Tanh[Divide[1,2]*x]]
Successful Successful - Successful [Tested: 3]
4.40.E5 sech x d x = gd ( x ) 𝑥 𝑥 Gudermannian 𝑥 {\displaystyle{\displaystyle\int\operatorname{sech}x\mathrm{d}x=\operatorname{% gd}\left(x\right)}}
\int\sech@@{x}\diff{x} = \Gudermannian@{x}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
int(sech(x), x) = arctan(sinh(x))
Integrate[Sech[x], x, GenerateConditions->None] == Gudermannian[x]
Successful Failure - Successful [Tested: 3]
4.40.E6 coth x d x = ln ( sinh x ) hyperbolic-cotangent 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\coth x\mathrm{d}x=\ln\left(\sinh x\right)}}
\int\coth@@{x}\diff{x} = \ln@{\sinh@@{x}}
0 < x , x < formulae-sequence 0 𝑥 𝑥 {\displaystyle{\displaystyle 0<x,x<\infty}}
int(coth(x), x) = ln(sinh(x))
Integrate[Coth[x], x, GenerateConditions->None] == Log[Sinh[x]]
Successful Successful - Successful [Tested: 3]
4.40.E7 0 e - x sin ( a x ) sinh x d x = 1 2 π coth ( 1 2 π a ) - 1 a superscript subscript 0 superscript 𝑒 𝑥 𝑎 𝑥 𝑥 𝑥 1 2 𝜋 hyperbolic-cotangent 1 2 𝜋 𝑎 1 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-x}\frac{\sin\left(ax\right)}{% \sinh x}\mathrm{d}x=\tfrac{1}{2}\pi\coth\left(\tfrac{1}{2}\pi a\right)-\frac{1% }{a}}}
\int_{0}^{\infty}e^{-x}\frac{\sin@{ax}}{\sinh@@{x}}\diff{x} = \tfrac{1}{2}\pi\coth@{\tfrac{1}{2}\pi a}-\frac{1}{a}
a 0 𝑎 0 {\displaystyle{\displaystyle a\neq 0}}
int(exp(- x)*(sin(a*x))/(sinh(x)), x = 0..infinity) = (1)/(2)*Pi*coth((1)/(2)*Pi*a)-(1)/(a)
Integrate[Exp[- x]*Divide[Sin[a*x],Sinh[x]], {x, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*Coth[Divide[1,2]*Pi*a]-Divide[1,a]
Failure Aborted Successful [Tested: 6] Successful [Tested: 6]
4.40.E8 0 sinh ( a x ) sinh ( π x ) d x = 1 2 tan ( 1 2 a ) superscript subscript 0 𝑎 𝑥 𝜋 𝑥 𝑥 1 2 1 2 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\sinh\left(ax\right)}{\sinh% \left(\pi x\right)}\mathrm{d}x=\tfrac{1}{2}\tan\left(\tfrac{1}{2}a\right)}}
\int_{0}^{\infty}\frac{\sinh@{ax}}{\sinh@{\pi x}}\diff{x} = \tfrac{1}{2}\tan@{\tfrac{1}{2}a}
- π < a , a < π formulae-sequence 𝜋 𝑎 𝑎 𝜋 {\displaystyle{\displaystyle-\pi<a,a<\pi}}
int((sinh(a*x))/(sinh(Pi*x)), x = 0..infinity) = (1)/(2)*tan((1)/(2)*a)
Integrate[Divide[Sinh[a*x],Sinh[Pi*x]], {x, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Tan[Divide[1,2]*a]
Failure Aborted Successful [Tested: 6] Skipped - Because timed out
4.40.E9 - e a x ( cosh ( 1 2 x ) ) 2 d x = 4 π a sin ( π a ) superscript subscript superscript 𝑒 𝑎 𝑥 superscript 1 2 𝑥 2 𝑥 4 𝜋 𝑎 𝜋 𝑎 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}\frac{e^{ax}}{\left(\cosh% \left(\tfrac{1}{2}x\right)\right)^{2}}\mathrm{d}x=\frac{4\pi a}{\sin\left(\pi a% \right)}}}
\int_{-\infty}^{\infty}\frac{e^{ax}}{\left(\cosh@{\tfrac{1}{2}x}\right)^{2}}\diff{x} = \frac{4\pi a}{\sin@{\pi a}}
- 1 < a , a < 1 formulae-sequence 1 𝑎 𝑎 1 {\displaystyle{\displaystyle-1<a,a<1}}
int((exp(a*x))/((cosh((1)/(2)*x))^(2)), x = - infinity..infinity) = (4*Pi*a)/(sin(Pi*a))
Integrate[Divide[Exp[a*x],(Cosh[Divide[1,2]*x])^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Divide[4*Pi*a,Sin[Pi*a]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.40.E10 0 tanh ( a x ) - tanh ( b x ) x d x = ln ( a b ) superscript subscript 0 𝑎 𝑥 𝑏 𝑥 𝑥 𝑥 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\tanh\left(ax\right)-\tanh% \left(bx\right)}{x}\mathrm{d}x=\ln\left(\frac{a}{b}\right)}}
\int_{0}^{\infty}\frac{\tanh@{ax}-\tanh@{bx}}{x}\diff{x} = \ln@{\frac{a}{b}}
a > 0 , b > 0 formulae-sequence 𝑎 0 𝑏 0 {\displaystyle{\displaystyle a>0,b>0}}
int((tanh(a*x)- tanh(b*x))/(x), x = 0..infinity) = ln((a)/(b))
Integrate[Divide[Tanh[a*x]- Tanh[b*x],x], {x, 0, Infinity}, GenerateConditions->None] == Log[Divide[a,b]]
Skipped - Unable to analyze test case: Null Skipped - Unable to analyze test case: Null - -
4.40.E11 arcsinh x d x = x arcsinh x - ( 1 + x 2 ) 1 / 2 hyperbolic-inverse-sine 𝑥 𝑥 𝑥 hyperbolic-inverse-sine 𝑥 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int\operatorname{arcsinh}x\mathrm{d}x=x% \operatorname{arcsinh}x-(1+x^{2})^{1/2}}}
\int\asinh@@{x}\diff{x} = x\asinh@@{x}-(1+x^{2})^{1/2}

int(arcsinh(x), x) = x*arcsinh(x)-(1 + (x)^(2))^(1/2)
Integrate[ArcSinh[x], x, GenerateConditions->None] == x*ArcSinh[x]-(1 + (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 3]
4.40.E12 arccosh x d x = x arccosh x - ( x 2 - 1 ) 1 / 2 hyperbolic-inverse-cosine 𝑥 𝑥 𝑥 hyperbolic-inverse-cosine 𝑥 superscript superscript 𝑥 2 1 1 2 {\displaystyle{\displaystyle\int\operatorname{arccosh}x\mathrm{d}x=x% \operatorname{arccosh}x-(x^{2}-1)^{1/2}}}
\int\acosh@@{x}\diff{x} = x\acosh@@{x}-(x^{2}-1)^{1/2}
1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle 1<x,x<\infty}}
int(arccosh(x), x) = x*arccosh(x)-((x)^(2)- 1)^(1/2)
Integrate[ArcCosh[x], x, GenerateConditions->None] == x*ArcCosh[x]-((x)^(2)- 1)^(1/2)
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.40.E13 arctanh x d x = x arctanh x + 1 2 ln ( 1 - x 2 ) hyperbolic-inverse-tangent 𝑥 𝑥 𝑥 hyperbolic-inverse-tangent 𝑥 1 2 1 superscript 𝑥 2 {\displaystyle{\displaystyle\int\operatorname{arctanh}x\mathrm{d}x=x% \operatorname{arctanh}x+\tfrac{1}{2}\ln\left(1-x^{2}\right)}}
\int\atanh@@{x}\diff{x} = x\atanh@@{x}+\tfrac{1}{2}\ln@{1-x^{2}}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(arctanh(x), x) = x*arctanh(x)+(1)/(2)*ln(1 - (x)^(2))
Integrate[ArcTanh[x], x, GenerateConditions->None] == x*ArcTanh[x]+Divide[1,2]*Log[1 - (x)^(2)]
Successful Successful - Successful [Tested: 1]
4.40.E14 arccsch x d x = x arccsch x + arcsinh x hyperbolic-inverse-cosecant 𝑥 𝑥 𝑥 hyperbolic-inverse-cosecant 𝑥 hyperbolic-inverse-sine 𝑥 {\displaystyle{\displaystyle\int\operatorname{arccsch}x\mathrm{d}x=x% \operatorname{arccsch}x+\operatorname{arcsinh}x}}
\int\acsch@@{x}\diff{x} = x\acsch@@{x}+\asinh@@{x}
0 < x , x < formulae-sequence 0 𝑥 𝑥 {\displaystyle{\displaystyle 0<x,x<\infty}}
int(arccsch(x), x) = x*arccsch(x)+ arcsinh(x)
Integrate[ArcCsch[x], x, GenerateConditions->None] == x*ArcCsch[x]+ ArcSinh[x]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.40.E15 arcsech x d x = x arcsech x + arcsin x hyperbolic-inverse-secant 𝑥 𝑥 𝑥 hyperbolic-inverse-secant 𝑥 𝑥 {\displaystyle{\displaystyle\int\operatorname{arcsech}x\mathrm{d}x=x% \operatorname{arcsech}x+\operatorname{arcsin}x}}
\int\asech@@{x}\diff{x} = x\asech@@{x}+\asin@@{x}
0 < x , x < 1 formulae-sequence 0 𝑥 𝑥 1 {\displaystyle{\displaystyle 0<x,x<1}}
int(arcsech(x), x) = x*arcsech(x)+ arcsin(x)
Integrate[ArcSech[x], x, GenerateConditions->None] == x*ArcSech[x]+ ArcSin[x]
Failure Successful
Failed [1 / 1]
Result: -1.570796327
Test Values: {x = .5}

Successful [Tested: 1]
4.40.E16 arccoth x d x = x arccoth x + 1 2 ln ( x 2 - 1 ) hyperbolic-inverse-cotangent 𝑥 𝑥 𝑥 hyperbolic-inverse-cotangent 𝑥 1 2 superscript 𝑥 2 1 {\displaystyle{\displaystyle\int\operatorname{arccoth}x\mathrm{d}x=x% \operatorname{arccoth}x+\tfrac{1}{2}\ln\left(x^{2}-1\right)}}
\int\acoth@@{x}\diff{x} = x\acoth@@{x}+\tfrac{1}{2}\ln@{x^{2}-1}
1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle 1<x,x<\infty}}
int(arccoth(x), x) = x*arccoth(x)+(1)/(2)*ln((x)^(2)- 1)
Integrate[ArcCoth[x], x, GenerateConditions->None] == x*ArcCoth[x]+Divide[1,2]*Log[(x)^(2)- 1]
Successful Failure -
Failed [1 / 1]
Result: Complex[0.0, -1.5707963267948966]
Test Values: {Rule[x, Rational[1, 2]]}

4.42.E1 sin A = a c 𝐴 𝑎 𝑐 {\displaystyle{\displaystyle\sin A=\frac{a}{c}}}
\sin@@{A} = \frac{a}{c}

sin(A) = (a)/(c)
Sin[A] == Divide[a,c]
Failure Failure
Failed [300 / 300]
Result: -.1410196655+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -1.5}

Result: 1.858980334+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = 1.5}

Result: -2.141019666+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -.5}

Result: 3.858980334+.3375964631*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.14101966569986213, 0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5]}

Result: Complex[1.8589803343001379, 0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, 1.5]}

... skip entries to safe data
4.42.E1 a c = 1 csc A 𝑎 𝑐 1 𝐴 {\displaystyle{\displaystyle\frac{a}{c}=\frac{1}{\csc A}}}
\frac{a}{c} = \frac{1}{\csc@@{A}}

(a)/(c) = (1)/(csc(A))
Divide[a,c] == Divide[1,Csc[A]]
Failure Failure
Failed [300 / 300]
Result: .1410196654-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -1.5}

Result: -1.858980335-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = 1.5}

Result: 2.141019665-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = -.5}

Result: -3.858980335-.3375964632*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.14101966569986213, -0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5]}

Result: Complex[-1.8589803343001379, -0.33759646322287]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, 1.5]}

... skip entries to safe data
4.42.E2 cos A = b c 𝐴 𝑏 𝑐 {\displaystyle{\displaystyle\cos A=\frac{b}{c}}}
\cos@@{A} = \frac{b}{c}

cos(A) = (b)/(c)
Cos[A] == Divide[b,c]
Failure Failure
Failed [300 / 300]
Result: -.2694569811-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -1.5}

Result: 1.730543019-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}

Result: -2.269456981-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}

Result: 3.730543019-.3969495503*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2694569809427748, -0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5]}

Result: Complex[1.730543019057225, -0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, 1.5]}

... skip entries to safe data
4.42.E2 b c = 1 sec A 𝑏 𝑐 1 𝐴 {\displaystyle{\displaystyle\frac{b}{c}=\frac{1}{\sec A}}}
\frac{b}{c} = \frac{1}{\sec@@{A}}

(b)/(c) = (1)/(sec(A))
Divide[b,c] == Divide[1,Sec[A]]
Failure Failure
Failed [300 / 300]
Result: .2694569810+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -1.5}

Result: -1.730543019+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}

Result: 2.269456981+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}

Result: -3.730543019+.3969495505*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.2694569809427748, 0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5]}

Result: Complex[-1.730543019057225, 0.3969495502290325]
Test Values: {Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, 1.5]}

... skip entries to safe data
4.42.E3 tan A = a b 𝐴 𝑎 𝑏 {\displaystyle{\displaystyle\tan A=\frac{a}{b}}}
\tan@@{A} = \frac{a}{b}

tan(A) = (a)/(b)
Tan[A] == Divide[a,b]
Failure Failure
Failed [300 / 300]
Result: -.2860691196+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5}

Result: 1.713930880+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}

Result: -2.286069120+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}

Result: 3.713930880+.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.2860691197539781, 0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5]}

Result: Complex[1.7139308802460218, 0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, 1.5]}

... skip entries to safe data
4.42.E3 a b = 1 cot A 𝑎 𝑏 1 𝐴 {\displaystyle{\displaystyle\frac{a}{b}=\frac{1}{\cot A}}}
\frac{a}{b} = \frac{1}{\cot@@{A}}

(a)/(b) = (1)/(cot(A))
Divide[a,b] == Divide[1,Cot[A]]
Failure Failure
Failed [300 / 300]
Result: .2860691196-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5}

Result: -1.713930880-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}

Result: 2.286069120-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}

Result: -3.713930880-.8500402975*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.2860691197539781, -0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5]}

Result: Complex[-1.7139308802460218, -0.8500402971922751]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, 1.5]}

... skip entries to safe data
4.42.E4 a sin A = b sin B 𝑎 𝐴 𝑏 𝐵 {\displaystyle{\displaystyle\frac{a}{\sin A}=\frac{b}{\sin B}}}
\frac{a}{\sin@@{A}} = \frac{b}{\sin@@{B}}

(a)/(sin(A)) = (b)/(sin(B))
Divide[a,Sin[A]] == Divide[b,Sin[B]]
Failure Failure
Failed [288 / 300]
Result: -3.025222791+1.188973104*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}

Result: -1.008407597+.3963243680*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}

Result: -2.016815194+.7926487360*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}

Result: .5042037985-.1981621840*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -2}

... skip entries to safe data
Failed [290 / 300]
Result: Complex[-2.3601096690692955, -0.4904383214455733]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.6651131226742772, 1.6794114261511237]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.42.E4 b sin B = c sin C 𝑏 𝐵 𝑐 𝐶 {\displaystyle{\displaystyle\frac{b}{\sin B}=\frac{c}{\sin C}}}
\frac{b}{\sin@@{B}} = \frac{c}{\sin@@{C}}

(b)/(sin(B)) = (c)/(sin(C))
Divide[b,Sin[B]] == Divide[c,Sin[C]]
Failure Failure
Failed [288 / 300]
Result: -3.025222791+1.188973104*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}

Result: -1.008407597+.3963243680*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}

Result: -2.016815194+.7926487360*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}

Result: .5042037985-.1981621840*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -2}

... skip entries to safe data
Failed [290 / 300]
Result: Complex[-2.3601096690692955, -0.4904383214455733]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.6651131226742772, 1.6794114261511237]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.42.E5 c 2 = a 2 + b 2 - 2 a b cos C superscript 𝑐 2 superscript 𝑎 2 superscript 𝑏 2 2 𝑎 𝑏 𝐶 {\displaystyle{\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos C}}
c^{2} = a^{2}+b^{2}-2ab\cos@@{C}

(c)^(2) = (a)^(2)+ (b)^(2)- 2*a*b*cos(C)
(c)^(2) == (a)^(2)+ (b)^(2)- 2*a*b*Cos[C]
Failure Failure
Failed [300 / 300]
Result: 1.037443585-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}

Result: 1.037443585-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}

Result: -.962556415-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}

Result: -.962556415-1.786272976*I
Test Values: {C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.0374435857575133, -1.7862729760306462]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.274944825888497, 2.1108391932082666]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.42.E6 a = b cos C + c cos B 𝑎 𝑏 𝐶 𝑐 𝐵 {\displaystyle{\displaystyle a=b\cos C+c\cos B}}
a = b\cos@@{C}+c\cos@@{B}

a = b*cos(C)+ c*cos(B)
a == b*Cos[C]+ c*Cos[B]
Failure Failure
Failed [300 / 300]
Result: .691629057-1.190848651*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}

Result: -1.5
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}

Result: -.38913962e-1-.7938991006*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}

Result: -.7694569811-.3969495503*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.6916290571716757, -1.1908486506870974]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.4374628038820034, 0.10818873905920678]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.42.E7 area = 1 2 b c sin A area 1 2 𝑏 𝑐 𝐴 {\displaystyle{\displaystyle\hbox{area}=\tfrac{1}{2}bc\sin A}}
\hbox{area} = \tfrac{1}{2}bc\sin@@{A}

a*r*exp(1)*a = (1)/(2)*b*c*sin(A)
a*r*E*a == Divide[1,2]*b*c*Sin[A]
Failure Failure
Failed [300 / 300]
Result: -10.14055405-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = -1.5}

Result: 8.207848294-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = 1.5}

Result: -4.024419932-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = -.5}

Result: 2.091714180-.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, r = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-10.140554047136932, -0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[r, -1.5]}

Result: Complex[8.207848294961623, -0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[r, 1.5]}

... skip entries to safe data
4.42.E7 1 2 b c sin A = ( s ( s - a ) ( s - b ) ( s - c ) ) 1 / 2 1 2 𝑏 𝑐 𝐴 superscript 𝑠 𝑠 𝑎 𝑠 𝑏 𝑠 𝑐 1 2 {\displaystyle{\displaystyle\tfrac{1}{2}bc\sin A=\left(s(s-a)(s-b)(s-c)\right)% ^{1/2}}}
\tfrac{1}{2}bc\sin@@{A} = \left(s(s-a)(s-b)(s-c)\right)^{1/2}

(1)/(2)*b*c*sin(A) = (s*(s - a)*(s - b)*(s - c))^(1/2)
Divide[1,2]*b*c*Sin[A] == (s*(s - a)*(s - b)*(s - c))^(1/2)
Failure Failure
Failed [300 / 300]
Result: .9663528763+.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = -1.5}

Result: -5.397608155+.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = 1.5}

Result: .9663528763-.3273107602*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = -.5}

Result: -1.033647124+.3797960210*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5, s = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.9663528760876551, 0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[s, -1.5]}

Result: Complex[-5.397608154591272, 0.37979602112572874]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5], Rule[s, 1.5]}

... skip entries to safe data
4.42.E8 cos a = cos b cos c + sin b sin c cos A 𝑎 𝑏 𝑐 𝑏 𝑐 𝐴 {\displaystyle{\displaystyle\cos a=\cos b\cos c+\sin b\sin c\cos A}}
\cos@@{a} = \cos@@{b}\cos@@{c}+\sin@@{b}\sin@@{c}\cos@@{A}

cos(a) = cos(b)*cos(c)+ sin(b)*sin(c)*cos(A)
Cos[a] == Cos[b]*Cos[c]+ Sin[b]*Sin[c]*Cos[A]
Failure Failure
Failed [300 / 300]
Result: -.6611541130+.3949633133*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}

Result: .7926210130-.3949633133*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}

Result: -.3407041550+.1898310285*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}

Result: .3580230890-.1898310285*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.6611541132159315, 0.3949633132423481]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, -1.5]}

Result: Complex[0.7926210131517828, -0.3949633132423481]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[c, 1.5]}

... skip entries to safe data
4.42.E9 sin A sin a = sin B sin b 𝐴 𝑎 𝐵 𝑏 {\displaystyle{\displaystyle\frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}}}
\frac{\sin@@{A}}{\sin@@{a}} = \frac{\sin@@{B}}{\sin@@{b}}

(sin(A))/(sin(a)) = (sin(B))/(sin(b))
Divide[Sin[A],Sin[a]] == Divide[Sin[B],Sin[b]]
Failure Failure
Failed [288 / 300]
Result: -1.722274990-.6768885409*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}

Result: .9305491492+.3657244397*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}

Result: -2.652824140-1.042612981*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}

Result: .835262737e-1+.328274973e-1*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -2}

... skip entries to safe data
Failed [286 / 300]
Result: Complex[-1.5335532645785146, 0.5223487441958409]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.18872172594452297, -1.1992372855051223]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.42.E9 sin B sin b = sin C sin c 𝐵 𝑏 𝐶 𝑐 {\displaystyle{\displaystyle\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c}}}
\frac{\sin@@{B}}{\sin@@{b}} = \frac{\sin@@{C}}{\sin@@{c}}

(sin(B))/(sin(b)) = (sin(C))/(sin(c))
Divide[Sin[B],Sin[b]] == Divide[Sin[C],Sin[c]]
Failure Failure
Failed [288 / 300]
Result: -1.722274990-.6768885409*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = 1.5}

Result: .9305491492+.3657244397*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -.5}

Result: -2.652824140-1.042612981*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = .5}

Result: .835262737e-1+.328274973e-1*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, b = -1.5, c = -2}

... skip entries to safe data
Failed [286 / 300]
Result: Complex[-1.5335532645785146, 0.5223487441958409]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.18872172594452297, -1.1992372855051223]
Test Values: {Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5], Rule[C, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.42.E10 sin a cos B = cos b sin c - sin b cos c cos A 𝑎 𝐵 𝑏 𝑐 𝑏 𝑐 𝐴 {\displaystyle{\displaystyle\sin a\cos B=\cos b\sin c-\sin b\cos c\cos A}}
\sin@@{a}\cos@@{B} = \cos@@{b}\sin@@{c}-\sin@@{b}\cos@@{c}\cos@@{A}

sin(a)*cos(B) = cos(b)*sin(c)- sin(b)*cos(c)*cos(A)
Sin[a]*Cos[B] == Cos[b]*Sin[c]- Sin[b]*Cos[c]*Cos[A]
Failure Failure
Failed [300 / 300]
Result: -.7097001135+.4239639484*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -1.5}

Result: -.8508201215+.4239639484*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = 1.5}

Result: -1.334305598+.7434385530*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = -.5}

Result: -1.402132040+.7434385530*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5, c = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.7097001133469564, 0.4239639481520351]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, -1.5]}

Result: Complex[-0.8508201214068235, 0.4239639481520351]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[c, 1.5]}

... skip entries to safe data
4.42.E11 cos a cos C = sin a cot b - sin C cot B 𝑎 𝐶 𝑎 𝑏 𝐶 𝐵 {\displaystyle{\displaystyle\cos a\cos C=\sin a\cot b-\sin C\cot B}}
\cos@@{a}\cos@@{C} = \sin@@{a}\cot@@{b}-\sin@@{C}\cot@@{B}

cos(a)*cos(C) = sin(a)*cot(b)- sin(C)*cot(B)
Cos[a]*Cos[C] == Sin[a]*Cot[b]- Sin[C]*Cot[B]
Failure Failure
Failed [300 / 300]
Result: .7114823860-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -1.5}

Result: .8529567893-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = 1.5}

Result: -1.043682738-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = -.5}

Result: 2.608121914-.4250286508*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5, b = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.7114823862555057, -0.42502865061548756]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.21981752916457492, 0.9933277802647092]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.42.E12 cos A = - cos B cos C + sin B sin C cos a 𝐴 𝐵 𝐶 𝐵 𝐶 𝑎 {\displaystyle{\displaystyle\cos A=-\cos B\cos C+\sin B\sin C\cos a}}
\cos@@{A} = -\cos@@{B}\cos@@{C}+\sin@@{B}\sin@@{C}\cos@@{a}

cos(A) = - cos(B)*cos(C)+ sin(B)*sin(C)*cos(a)
Cos[A] == - Cos[B]*Cos[C]+ Sin[B]*Sin[C]*Cos[a]
Failure Failure
Failed [300 / 300]
Result: 1.062535945-1.017952978*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -1.5}

Result: 1.062535945-1.017952978*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = 1.5}

Result: .5591646152-1.485905089*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = -.5}

Result: .5591646152-1.485905089*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, C = 1/2*3^(1/2)+1/2*I, a = .5}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.0625359450203713, -1.017952977441946]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.8749374794081675, -0.5777856599721184]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.43#Ex1 A = ( - 4 3 p ) 1 / 2 𝐴 superscript 4 3 𝑝 1 2 {\displaystyle{\displaystyle A=\left(-\tfrac{4}{3}p\right)^{1/2}}}
A = \left(-\tfrac{4}{3}p\right)^{1/2}

A = (-(4)/(3)*p)^(1/2)
A == (-Divide[4,3]*p)^(1/2)
Skipped - no semantic math Skipped - no semantic math - -
4.43#Ex2 B = ( 4 3 p ) 1 / 2 𝐵 superscript 4 3 𝑝 1 2 {\displaystyle{\displaystyle B=\left(\tfrac{4}{3}p\right)^{1/2}}}
B = \left(\tfrac{4}{3}p\right)^{1/2}

B = ((4)/(3)*p)^(1/2)
B == (Divide[4,3]*p)^(1/2)
Skipped - no semantic math Skipped - no semantic math - -
4.43.E2 z 3 + p z + q = 0 superscript 𝑧 3 𝑝 𝑧 𝑞 0 {\displaystyle{\displaystyle z^{3}+pz+q=0}}
z^{3}+pz+q = 0

(z)^(3)+ p*z + q = 0
(z)^(3)+ p*z + q == 0
Skipped - no semantic math Skipped - no semantic math - -
4.45.E1 y = x 2 - m - 1 𝑦 superscript 𝑥 superscript 2 𝑚 1 {\displaystyle{\displaystyle y=x^{2^{-m}}-1}}
y = x^{2^{-m}}-1

y = (x)^((2)^(- m))- 1
y == (x)^((2)^(- m))- 1
Skipped - no semantic math Skipped - no semantic math - -
4.45.E2 ln x = 2 m ln ( 1 + y ) 𝑥 superscript 2 𝑚 1 𝑦 {\displaystyle{\displaystyle\ln x=2^{m}\ln\left(1+y\right)}}
\ln@@{x} = 2^{m}\ln@{1+y}

ln(x) = (2)^(m)* ln(1 + y)
Log[x] == (2)^(m)* Log[1 + y]
Failure Failure
Failed [54 / 54]
Result: 1.791759469-6.283185308*I
Test Values: {x = 1.5, y = -1.5, m = 1}

Result: 3.178053830-12.56637062*I
Test Values: {x = 1.5, y = -1.5, m = 2}

Result: 5.950642553-25.13274123*I
Test Values: {x = 1.5, y = -1.5, m = 3}

Result: -1.427116356
Test Values: {x = 1.5, y = 1.5, m = 1}

... skip entries to safe data
Failed [54 / 54]
Result: Complex[1.791759469228055, -6.283185307179586]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[3.1780538303479453, -12.566370614359172]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[y, -1.5]}

... skip entries to safe data
4.45.E3 ln x = ln ξ + m ln 10 𝑥 𝜉 𝑚 10 {\displaystyle{\displaystyle\ln x=\ln\xi+m\ln 10}}
\ln@@{x} = \ln@@{\xi}+m\ln@@{10}

ln(x) = ln(xi)+ m*ln(10)
Log[x] == Log[\[Xi]]+ m*Log[10]
Failure Failure
Failed [90 / 90]
Result: -1.897119985-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 1}

Result: -4.199705078-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 2}

Result: -6.502290171-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 3}

Result: -1.897119985-2.094395102*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2), m = 1}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[-1.8971199848858815, -0.5235987755982988]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-4.199705077879927, -0.5235987755982988]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.45#Ex1 m = x ln 10 + 1 2 𝑚 𝑥 10 1 2 {\displaystyle{\displaystyle m=\left\lfloor\frac{x}{\ln 10}+\frac{1}{2}\right% \rfloor}}
m = \floor{\frac{x}{\ln@@{10}}+\frac{1}{2}}

m = floor((x)/(ln(10))+(1)/(2))
m == Floor[Divide[x,Log[10]]+Divide[1,2]]
Failure Failure
Failed [7 / 9]
Result: 1.
Test Values: {x = 1.5, m = 2}

Result: 2.
Test Values: {x = 1.5, m = 3}

Result: 1.
Test Values: {x = .5, m = 1}

Result: 2.
Test Values: {x = .5, m = 2}

... skip entries to safe data
Failed [7 / 9]
Result: 1.0
Test Values: {Rule[m, 2], Rule[x, 1.5]}

Result: 2.0
Test Values: {Rule[m, 3], Rule[x, 1.5]}

... skip entries to safe data
4.45#Ex2 y = x - m ln 10 𝑦 𝑥 𝑚 10 {\displaystyle{\displaystyle y=x-m\ln 10}}
y = x-m\ln@@{10}

y = x - m*ln(10)
y == x - m*Log[10]
Failure Failure
Failed [54 / 54]
Result: -.697414907
Test Values: {x = 1.5, y = -1.5, m = 1}

Result: 1.605170186
Test Values: {x = 1.5, y = -1.5, m = 2}

Result: 3.907755279
Test Values: {x = 1.5, y = -1.5, m = 3}

Result: 2.302585093
Test Values: {x = 1.5, y = 1.5, m = 1}

... skip entries to safe data
Failed [54 / 54]
Result: -0.6974149070059541
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[y, -1.5]}

Result: 1.6051701859880918
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[y, -1.5]}

... skip entries to safe data
4.45.E5 e x = 10 m e y superscript 𝑒 𝑥 superscript 10 𝑚 superscript 𝑒 𝑦 {\displaystyle{\displaystyle e^{x}=10^{m}e^{y}}}
e^{x} = 10^{m}e^{y}

exp(x) = (10)^(m)* exp(y)
Exp[x] == (10)^(m)* Exp[y]
Skipped - no semantic math Skipped - no semantic math - -
4.45#Ex3 m = ξ + 1 2 𝑚 𝜉 1 2 {\displaystyle{\displaystyle m=\left\lfloor\xi+\tfrac{1}{2}\right\rfloor}}
m = \floor{\xi+\tfrac{1}{2}}

m = floor(xi +(1)/(2))
m == Floor[\[Xi]+Divide[1,2]]
Failure Failure
Failed [26 / 30]
Result: 1.
Test Values: {xi = 1/2*3^(1/2)+1/2*I, m = 2}

Result: 2.
Test Values: {xi = 1/2*3^(1/2)+1/2*I, m = 3}

Result: 1.
Test Values: {xi = -1/2+1/2*I*3^(1/2), m = 1}

Result: 2.
Test Values: {xi = -1/2+1/2*I*3^(1/2), m = 2}

... skip entries to safe data
Failed [26 / 30]
Result: 1.0
Test Values: {Rule[m, 2], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: 2.0
Test Values: {Rule[m, 3], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.45#Ex4 θ = π ( ξ - m ) 𝜃 𝜋 𝜉 𝑚 {\displaystyle{\displaystyle\theta=\pi(\xi-m)}}
\theta = \pi(\xi-m)

theta = Pi*(xi - m)
\[Theta] == Pi*(\[Xi]- m)
Skipped - no semantic math Skipped - no semantic math - -
4.45#Ex5 sin x = ( - 1 ) m sin θ 𝑥 superscript 1 𝑚 𝜃 {\displaystyle{\displaystyle\sin x=(-1)^{m}\sin\theta}}
\sin@@{x} = (-1)^{m}\sin@@{\theta}

sin(x) = (- 1)^(m)* sin(theta)
Sin[x] == (- 1)^(m)* Sin[\[Theta]]
Failure Failure
Failed [81 / 90]
Result: 1.856475321+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}

Result: .1385146521-.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}

Result: 1.856475321+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 3}

Result: 1.338405873+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = .5, m = 1}

... skip entries to safe data
Failed [81 / 90]
Result: Complex[1.8564753209041922, 0.33759646322287]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.13851465230391657, -0.33759646322287]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.45#Ex6 cos x = ( - 1 ) m cos θ 𝑥 superscript 1 𝑚 𝜃 {\displaystyle{\displaystyle\cos x=(-1)^{m}\cos\theta}}
\cos@@{x} = (-1)^{m}\cos@@{\theta}

cos(x) = (- 1)^(m)* cos(theta)
Cos[x] == (- 1)^(m)* Cos[\[Theta]]
Failure Failure
Failed [84 / 90]
Result: .8012802206-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}

Result: -.6598058172+.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}

Result: .8012802206-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 3}

Result: 1.608125581-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = .5, m = 1}

... skip entries to safe data
Failed [84 / 90]
Result: Complex[0.8012802207249281, -0.3969495502290325]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6598058173895223, 0.3969495502290325]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.45.E8 2 arctan x 1 + ( 1 + x 2 ) 1 / 2 = arctan x 2 𝑥 1 superscript 1 superscript 𝑥 2 1 2 𝑥 {\displaystyle{\displaystyle 2\operatorname{arctan}\frac{x}{1+(1+x^{2})^{1/2}}% =\operatorname{arctan}x}}
2\atan@@{\frac{x}{1+(1+x^{2})^{1/2}}} = \atan@@{x}
0 < x , x < formulae-sequence 0 𝑥 𝑥 {\displaystyle{\displaystyle 0<x,x<\infty}}
2*arctan((x)/(1 +(1 + (x)^(2))^(1/2))) = arctan(x)
2*ArcTan[Divide[x,1 +(1 + (x)^(2))^(1/2)]] == ArcTan[x]
Successful Failure - Successful [Tested: 3]
4.45.E9 x n = x n - 1 1 + ( 1 + x n - 1 2 ) 1 / 2 subscript 𝑥 𝑛 subscript 𝑥 𝑛 1 1 superscript 1 subscript superscript 𝑥 2 𝑛 1 1 2 {\displaystyle{\displaystyle x_{n}=\frac{x_{n-1}}{1+(1+x^{2}_{n-1})^{1/2}}}}
x_{n} = \frac{x_{n-1}}{1+(1+x^{2}_{n-1})^{1/2}}

x[n] = (x[n - 1])/(1 +(1 + (x[n - 1])^(2))^(1/2))
Subscript[x, n] == Divide[Subscript[x, n - 1],1 +(1 + (Subscript[x, n - 1])^(2))^(1/2)]
Skipped - no semantic math Skipped - no semantic math - -
4.45.E10 arctan x = 2 n arctan x n 𝑥 superscript 2 𝑛 subscript 𝑥 𝑛 {\displaystyle{\displaystyle\operatorname{arctan}x=2^{n}\operatorname{arctan}x% _{n}}}
\atan@@{x} = 2^{n}\atan@@{x_{n}}

arctan(x) = (2)^(n)* arctan(x[n])
ArcTan[x] == (2)^(n)* ArcTan[Subscript[x, n]]
Failure Failure
Failed [90 / 90]
Result: -.5880026038-.5493061442*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: -2.158798931-1.098612288*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 2}

Result: -5.300391585-2.197224577*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 3}

Result: 2.553590050-1.316957897*I
Test Values: {x = 1.5, x[n] = -1/2+1/2*I*3^(1/2), n = 1}

... skip entries to safe data
Failed [90 / 90]
Result: Complex[-0.5880026035475677, -0.5493061443340551]
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[Subscript[x, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.1587989303424644, -1.0986122886681102]
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[Subscript[x, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.45#Ex7 x 1 = 0.90000 subscript 𝑥 1 0.90000 {\displaystyle{\displaystyle x_{1}=0.90000\dots}}
x_{1} = 0.90000\dots

x[1] = 0.90000
Subscript[x, 1] == 0.90000
Skipped - no semantic math Skipped - no semantic math - -
4.45#Ex8 x 2 = 0.38373 subscript 𝑥 2 0.38373 {\displaystyle{\displaystyle x_{2}=0.38373\dots}}
x_{2} = 0.38373\dots

x[2] = 0.38373
Subscript[x, 2] == 0.38373
Skipped - no semantic math Skipped - no semantic math - -
4.45#Ex9 x 3 = 0.18528 subscript 𝑥 3 0.18528 {\displaystyle{\displaystyle x_{3}=0.18528\dots}}
x_{3} = 0.18528\dots

x[3] = 0.18528
Subscript[x, 3] == 0.18528
Skipped - no semantic math Skipped - no semantic math - -
4.45#Ex10 x 4 = 0.09185 subscript 𝑥 4 0.09185 {\displaystyle{\displaystyle x_{4}=0.09185\dots}}
x_{4} = 0.09185\dots

x[4] = 0.09185
Subscript[x, 4] == 0.09185
Skipped - no semantic math Skipped - no semantic math - -
4.45.E13 arctan x = 16 arctan x 4 𝑥 16 subscript 𝑥 4 {\displaystyle{\displaystyle\operatorname{arctan}x=16\operatorname{arctan}x_{4% }}}
\atan@@{x} = 16\atan@@{x_{4}}

arctan(x) = 16*arctan(x[4])
ArcTan[x] == 16*ArcTan[Subscript[x, 4]]
Failure Failure
Failed [30 / 30]
Result: -11.58357690-4.394449154*I
Test Values: {x = 1.5, x[4] = 1/2*3^(1/2)+1/2*I}

Result: 13.54916434-10.53566318*I
Test Values: {x = 1.5, x[4] = -1/2+1/2*I*3^(1/2)}

Result: -11.58357690+10.53566318*I
Test Values: {x = 1.5, x[4] = 1/2-1/2*I*3^(1/2)}

Result: 13.54916434+4.394449154*I
Test Values: {x = 1.5, x[4] = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-11.583576891111845, -4.394449154672441]
Test Values: {Rule[x, 1.5], Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[13.549164337606502, -10.535663175398536]
Test Values: {Rule[x, 1.5], Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.45.E13 16 arctan x 4 = 1.46563 16 subscript 𝑥 4 1.46563 {\displaystyle{\displaystyle 16\operatorname{arctan}x_{4}=1.46563\dots}}
16\atan@@{x_{4}} = 1.46563\dots

16*arctan(x[4]) = 1.46563
16*ArcTan[Subscript[x, 4]] == 1.46563
Failure Failure
Failed [10 / 10]
Result: 11.10074062+4.394449154*I
Test Values: {x[4] = 1/2*3^(1/2)+1/2*I}

Result: -14.03200062+10.53566318*I
Test Values: {x[4] = -1/2+1/2*I*3^(1/2)}

Result: 11.10074062-10.53566318*I
Test Values: {x[4] = 1/2-1/2*I*3^(1/2)}

Result: -14.03200062-4.394449154*I
Test Values: {x[4] = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [10 / 10]
Result: Complex[11.100740614359175, 4.394449154672441]
Test Values: {Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-14.032000614359173, 10.535663175398536]
Test Values: {Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.45.E15 ln z = ln | z | + i ph z 𝑧 𝑧 𝑖 phase 𝑧 {\displaystyle{\displaystyle\ln z=\ln|z|+i\operatorname{ph}z}}
\ln@@{z} = \ln@@{|z|}+i\phase@@{z}
- π ph z , ph z π formulae-sequence 𝜋 phase 𝑧 phase 𝑧 𝜋 {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}z,\operatorname{ph}z\leq% \pi}}
ln(z) = ln(abs(z))+ I*argument(z)
Log[z] == Log[Abs[z]]+ I*Arg[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.45.E16 e z = e z ( cos ( z ) + i sin ( z ) ) superscript 𝑒 𝑧 superscript 𝑒 𝑧 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle e^{z}=e^{\Re z}(\cos\left(\Im z\right)+i\sin\left% (\Im z\right))}}
e^{z} = e^{\realpart@@{z}}(\cos@{\imagpart@@{z}}+i\sin@{\imagpart@@{z}})

exp(z) = exp(Re(z))*(cos(Im(z))+ I*sin(Im(z)))
Exp[z] == Exp[Re[z]]*(Cos[Im[z]]+ I*Sin[Im[z]])
Failure Successful Successful [Tested: 7] Successful [Tested: 7]