Results of Elementary Functions I: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 1: Line 1:
 
<div style="width: 100%; height: 75vh; overflow: auto;">
{| class="wikitable sortable" style="margin: 0;"
|-
! scope="col" style="position: sticky; top: 0;" | DLMF
! scope="col" style="position: sticky; top: 0;" | Formula
! scope="col" style="position: sticky; top: 0;" | Constraints
! scope="col" style="position: sticky; top: 0;" | Maple
! scope="col" style="position: sticky; top: 0;" | Mathematica
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
| [https://dlmf.nist.gov/4.2.E1 4.2.E1] || [[Item:Q1497|<math>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E2 4.2.E2] || [[Item:Q1498|<math>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = int((1)/(t), t = 1..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E3 4.2.E3] || [[Item:Q1499|<math>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} < \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.2.E4 4.2.E4] || [[Item:Q1500|<math>z = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>z = x</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) = x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(x + y*I) == x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.2.E5 4.2.E5] || [[Item:Q1501|<math>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}</syntaxhighlight> || <math>-\pi < \phase@@{z}, \phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z) = ln(abs(z))+ I*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[Abs[z]]+ I*Arg[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E6 4.2.E6] || [[Item:Q1502|<math>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{z} = \ln@@{z}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = ln(z)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == Log[z]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || [[Item:Q1503|<math>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x + I*0) = ln(abs(x))+ I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x + I*0] == Log[Abs[x]]+ I*Pi</syntaxhighlight> || Failure || Successful || Error || Skip - symbolical successful subtest
|-
| [https://dlmf.nist.gov/4.2.E7 4.2.E7] || [[Item:Q1503|<math>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <syntaxhighlight lang=mathematica>ln(x - I*0) = ln(abs(x))- I*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x - I*0] == Log[Abs[x]]- I*Pi</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
|-
| [https://dlmf.nist.gov/4.2.E8 4.2.E8] || [[Item:Q1504|<math>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (ln(z))/(ln(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[z],Log[a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.2.E9 4.2.E9] || [[Item:Q1505|<math>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](z) = (log[b](z))/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,z] == Divide[Log[b,z],Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 252]
|-
| [https://dlmf.nist.gov/4.2.E10 4.2.E10] || [[Item:Q1506|<math>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[a](b) = (1)/(log[b](a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[a,b] == Divide[1,Log[b,a]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 36]
|-
| [https://dlmf.nist.gov/4.2.E11 4.2.E11] || [[Item:Q1507|<math>e = 2.71828\ 18284\ 59045\ 23536\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e = 2.71828\ 18284\ 59045\ 23536\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(1) = 2.71828182845904523536</syntaxhighlight> || <syntaxhighlight lang=mathematica>E == 2.71828182845904523536</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.2.E12 4.2.E12] || [[Item:Q1508|<math>\ln@@{e} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.2.E13 4.2.E13] || [[Item:Q1509|<math>\int_{1}^{e}\frac{\diff{t}}{t} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{1}^{e}\frac{\diff{t}}{t} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(t), t = 1..exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.2.E14 4.2.E14] || [[Item:Q1510|<math>\genlog{e}@@{z} = \ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{e}@@{z} = \ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[exp(1)](z) = ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[E,z] == Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || [[Item:Q1511|<math>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](z) = (ln(z))/(ln(10))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,z] == Divide[Log[z],Log[10]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E15 4.2.E15] || [[Item:Q1511|<math>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E16 4.2.E16] || [[Item:Q1512|<math>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z) = (ln(10))*log[10](z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[z] == (Log[10])*Log[10,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E17 4.2.E17] || [[Item:Q1513|<math>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>log[10](exp(1)) = 0.43429448190325182765</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10,E] == 0.43429448190325182765</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.2.E18 4.2.E18] || [[Item:Q1514|<math>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(10) = 2.30258509299404568401</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[10] == 2.30258509299404568401</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.2.E20 4.2.E20] || [[Item:Q1516|<math>\exp@{z+2\pi i} = \exp@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{z+2\pi i} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z + 2*Pi*I) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z + 2*Pi*I] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E21 4.2.E21] || [[Item:Q1517|<math>\exp@{-z} = 1/\exp@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{-z} = 1/\exp@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- z) = 1/exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- z] == 1/Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E22 4.2.E22] || [[Item:Q1518|<math>|\exp@@{z}| = \exp@{\realpart@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\exp@@{z}| = \exp@{\realpart@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(exp(z)) = exp(Re(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]] == Exp[Re[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E23 4.2.E23] || [[Item:Q1519|<math>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(exp(z)) = Im(z)+ 2*k*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[Exp[z]] == Im[z]+ 2*k*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.2.E24 4.2.E24] || [[Item:Q1520|<math>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.2.E26 4.2.E26] || [[Item:Q1522|<math>z^{a} = \exp@{a\Ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\Ln@@{z}}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.2.E28 4.2.E28] || [[Item:Q1524|<math>z^{a} = \exp@{a\ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a} = \exp@{a\ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(a) = exp(a*ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a) == Exp[a*Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.2.E29 4.2.E29] || [[Item:Q1525|<math>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.2.E30 4.2.E30] || [[Item:Q1526|<math>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.2#Ex1 4.2#Ex1] || [[Item:Q1527|<math>|z^{a}| = |z|^{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>|z^{a}| = |z|^{a}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">abs((z)^(a)) = (abs(z))^(a)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Abs[(z)^(a)] == (Abs[z])^(a)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.2#Ex2 4.2#Ex2] || [[Item:Q1528|<math>\phase@{z^{a}} = a\phase@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{z^{a}} = a\phase@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument((z)^(a)) = a*argument(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[(z)^(a)] == a*Arg[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.2.E32 4.2.E32] || [[Item:Q1529|<math>e^{z} = \exp@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = \exp@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.2.E33 4.2.E33] || [[Item:Q1530|<math>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(z) = (exp(z))*exp(2*k*z*Pi*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3946493584+.4640329579*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.0864864733305994, 1.139979110702337]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.3929465878104918, 0.4620308216689905]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || [[Item:Q1533|<math>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- Pi <= Im((1)/(a)*ln(w))</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Pi <= Im[Divide[1,a]*Log[w]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.2.E36 4.2.E36] || [[Item:Q1533|<math>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im((1)/(a)*ln(w)) <= Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[Divide[1,a]*Log[w]] <= Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.4.E1 4.4.E1] || [[Item:Q1535|<math>\ln@@{1} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{1} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E2 4.4.E2] || [[Item:Q1536|<math>\ln@{-1+\iunit 0} = +\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-1+\iunit 0} = +\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- 1 + I*0) = + Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- 1 + I*0] == + Pi*I</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E2 4.4.E2] || [[Item:Q1536|<math>\ln@{-1-\iunit 0} = -\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-1-\iunit 0} = -\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- 1 - I*0) = - Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- 1 - I*0] == - Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185308*I
Test Values: {}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.4.E3 4.4.E3] || [[Item:Q1537|<math>\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(+ I) = +(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[+ I] == +Divide[1,2]*Pi*I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E3 4.4.E3] || [[Item:Q1537|<math>\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(- I) = -(1)/(2)*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[- I] == -Divide[1,2]*Pi*I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.4.E4 4.4.E4] || [[Item:Q1538|<math>e^{0} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(0) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.4.E5 4.4.E5] || [[Item:Q1539|<math>e^{+\pi\iunit} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E5 4.4.E5] || [[Item:Q1539|<math>e^{-\pi\iunit} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E6 4.4.E6] || [[Item:Q1540|<math>e^{+\pi\iunit/2} = +\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/2} = +\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/2) = + I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/2] == + I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E6 4.4.E6] || [[Item:Q1540|<math>e^{-\pi\iunit/2} = -\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/2} = -\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/2) = - I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/2] == - I</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E7 4.4.E7] || [[Item:Q1541|<math>e^{2\pi k\iunit} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{2\pi k\iunit} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(2*Pi*k*I) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[2*Pi*k*I] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E8 4.4.E8] || [[Item:Q1542|<math>e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E8 4.4.E8] || [[Item:Q1542|<math>e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E9 4.4.E9] || [[Item:Q1543|<math>e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E9 4.4.E9] || [[Item:Q1543|<math>e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E10 4.4.E10] || [[Item:Q1544|<math>e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E10 4.4.E10] || [[Item:Q1544|<math>e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E11 4.4.E11] || [[Item:Q1545|<math>e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E11 4.4.E11] || [[Item:Q1545|<math>e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E12 4.4.E12] || [[Item:Q1546|<math>\iunit^{+\iunit} = e^{-\pi/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\iunit^{+\iunit} = e^{-\pi/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(I)^(+ I) = exp(- Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(I)^(+ I) == Exp[- Pi/2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E12 4.4.E12] || [[Item:Q1546|<math>\iunit^{-\iunit} = e^{+\pi/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\iunit^{-\iunit} = e^{+\pi/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(I)^(- I) = exp(+ Pi/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(I)^(- I) == Exp[+ Pi/2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E13 4.4.E13] || [[Item:Q1547|<math>\lim_{x\to\infty}x^{-a}\ln@@{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to\infty}x^{-a}\ln@@{x} = 0</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>limit((x)^(- a)* ln(x), x = infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.4.E14 4.4.E14] || [[Item:Q1548|<math>\lim_{x\to 0}x^{a}\ln@@{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to 0}x^{a}\ln@@{x} = 0</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>limit((x)^(a)* ln(x), x = 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.4.E15 4.4.E15] || [[Item:Q1549|<math>\lim_{x\to\infty}x^{a}e^{-x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{x\to\infty}x^{a}e^{-x} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((x)^(a)* exp(- x), x = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.4.E16 4.4.E16] || [[Item:Q1550|<math>\lim_{z\to\infty}z^{a}e^{-z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{z\to\infty}z^{a}e^{-z} = 0</syntaxhighlight> || <math>|\phase@@{z}| \leq \tfrac{1}{2}\pi-\delta, \tfrac{1}{2}\pi-\delta < \tfrac{1}{2}\pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((z)^(a)* exp(- z), z = infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.4.E17 4.4.E17] || [[Item:Q1551|<math>\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}</syntaxhighlight> || <math>z = </math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 +(z)/(n))^(n), n = infinity) = exp(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.4.E18 4.4.E18] || [[Item:Q1552|<math>\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 +(1)/(n))^(n), n = infinity) = exp(1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.4.E19 4.4.E19] || [[Item:Q1553|<math>\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.4.E19 4.4.E19] || [[Item:Q1553|<math>\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>gamma = 0.57721566490153286060</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerGamma == 0.57721566490153286060</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E1 4.5.E1] || [[Item:Q1554|<math>\frac{x}{1+x} < \ln@{1+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x}{1+x} < \ln@{1+x}</syntaxhighlight> || <math>x > -1, x \neq 0</math> || <syntaxhighlight lang=mathematica>(x)/(1 + x) < ln(1 + x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[x,1 + x] < Log[1 + x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.5.E1 4.5.E1] || [[Item:Q1554|<math>\ln@{1+x} < x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{1+x} < x</syntaxhighlight> || <math>x > -1, x \neq 0</math> || <syntaxhighlight lang=mathematica>ln(1 + x) < x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[1 + x] < x</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.5.E2 4.5.E2] || [[Item:Q1555|<math>x < -\ln@{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x < -\ln@{1-x}</syntaxhighlight> || <math>x < 1, x \neq 0</math> || <syntaxhighlight lang=mathematica>x < - ln(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x < - Log[1 - x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E2 4.5.E2] || [[Item:Q1555|<math>-\ln@{1-x} < \frac{x}{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\ln@{1-x} < \frac{x}{1-x}</syntaxhighlight> || <math>x < 1, x \neq 0</math> || <syntaxhighlight lang=mathematica>- ln(1 - x) < (x)/(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Log[1 - x] < Divide[x,1 - x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E3 4.5.E3] || [[Item:Q1556|<math>|\ln@{1-x}| < \tfrac{3}{2}x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\ln@{1-x}| < \tfrac{3}{2}x</syntaxhighlight> || <math>0 < x, x \leq 0.5828\dots</math> || <syntaxhighlight lang=mathematica>abs(ln(1 - x)) < (3)/(2)*x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Log[1 - x]] < Divide[3,2]*x</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E4 4.5.E4] || [[Item:Q1557|<math>\ln@@{x} \leq x-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{x} \leq x-1</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>ln(x) <= x - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x] <= x - 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.5.E5 4.5.E5] || [[Item:Q1558|<math>\ln@@{x} \leq a(x^{1/a}-1)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{x} \leq a(x^{1/a}-1)</syntaxhighlight> || <math>a > 0,  x > 0</math> || <syntaxhighlight lang=mathematica>ln(x) <= a*((x)^(1/a)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[x] <= a*((x)^(1/a)- 1)</syntaxhighlight> || Error || Failure || - || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/4.5.E6 4.5.E6] || [[Item:Q1559|<math>|\ln@{1+z}| \leq -\ln@{1-|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\ln@{1+z}| \leq -\ln@{1-|z|}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>abs(ln(1 + z)) <= - ln(1 -abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Log[1 + z]] <= - Log[1 -Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E7 4.5.E7] || [[Item:Q1560|<math>e^{-x/(1-x)} < 1-x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-x/(1-x)} < 1-x</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>exp(- x/(1 - x)) < 1 - x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- x/(1 - x)] < 1 - x</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E7 4.5.E7] || [[Item:Q1560|<math>1-x < e^{-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-x < e^{-x}</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>1 - x < exp(- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - x < Exp[- x]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E8 4.5.E8] || [[Item:Q1561|<math>1+x < e^{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1+x < e^{x}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>1 + x < exp(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 + x < Exp[x]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.5.E9 4.5.E9] || [[Item:Q1562|<math>e^{x} < \frac{1}{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x} < \frac{1}{1-x}</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>exp(x) < (1)/(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x] < Divide[1,1 - x]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E10 4.5.E10] || [[Item:Q1563|<math>\frac{x}{1+x} < 1-e^{-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x}{1+x} < 1-e^{-x}</syntaxhighlight> || <math>x > -1</math> || <syntaxhighlight lang=mathematica>(x)/(1 + x) < 1 - exp(- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[x,1 + x] < 1 - Exp[- x]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.5.E10 4.5.E10] || [[Item:Q1563|<math>1-e^{-x} < x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-e^{-x} < x</syntaxhighlight> || <math>x > -1</math> || <syntaxhighlight lang=mathematica>1 - exp(- x) < x</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - Exp[- x] < x</syntaxhighlight> || Error || Failure || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.5.E11 4.5.E11] || [[Item:Q1564|<math>x < e^{x}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x < e^{x}-1</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>x < exp(x)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>x < Exp[x]- 1</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E11 4.5.E11] || [[Item:Q1564|<math>e^{x}-1 < \frac{x}{1-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x}-1 < \frac{x}{1-x}</syntaxhighlight> || <math>x < 1</math> || <syntaxhighlight lang=mathematica>exp(x)- 1 < (x)/(1 - x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x]- 1 < Divide[x,1 - x]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E12 4.5.E12] || [[Item:Q1565|<math>e^{x/(1+x)} < 1+x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x/(1+x)} < 1+x</syntaxhighlight> || <math>x > -1</math> || <syntaxhighlight lang=mathematica>exp(x/(1 + x)) < 1 + x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x/(1 + x)] < 1 + x</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.5.E13 4.5.E13] || [[Item:Q1566|<math>e^{xy/(x+y)} < \left(1+\frac{x}{y}\right)^{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{xy/(x+y)} < \left(1+\frac{x}{y}\right)^{y}</syntaxhighlight> || <math>x > 0, y > 0</math> || <syntaxhighlight lang=mathematica>exp(x*y/(x + y)) < (1 +(x)/(y))^(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x*y/(x + y)] < (1 +Divide[x,y])^(y)</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/4.5.E13 4.5.E13] || [[Item:Q1566|<math>\left(1+\frac{x}{y}\right)^{y} < e^{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(1+\frac{x}{y}\right)^{y} < e^{x}</syntaxhighlight> || <math>x > 0, y > 0</math> || <syntaxhighlight lang=mathematica>(1 +(x)/(y))^(y) < exp(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(1 +Divide[x,y])^(y) < Exp[x]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/4.5.E14 4.5.E14] || [[Item:Q1567|<math>e^{-x} < 1-\tfrac{1}{2}x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{-x} < 1-\tfrac{1}{2}x</syntaxhighlight> || <math>0 < x, x \leq 1.5936\dots</math> || <syntaxhighlight lang=mathematica>exp(- x) < 1 -(1)/(2)*x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[- x] < 1 -Divide[1,2]*x</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.5.E15 4.5.E15] || [[Item:Q1568|<math>\tfrac{1}{4}|z| < |e^{z}-1|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{4}|z| < |e^{z}-1|</syntaxhighlight> || <math>0 < |z|, |z| < 1</math> || <syntaxhighlight lang=mathematica>(1)/(4)*abs(z) < abs(exp(z)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,4]*Abs[z] < Abs[Exp[z]- 1]</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E15 4.5.E15] || [[Item:Q1568|<math>|e^{z}-1| < \tfrac{7}{4}|z|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|e^{z}-1| < \tfrac{7}{4}|z|</syntaxhighlight> || <math>0 < |z|, |z| < 1</math> || <syntaxhighlight lang=mathematica>abs(exp(z)- 1) < (7)/(4)*abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]- 1] < Divide[7,4]*Abs[z]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E16 4.5.E16] || [[Item:Q1569|<math>|e^{z}-1| \leq e^{|z|}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|e^{z}-1| \leq e^{|z|}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(exp(z)- 1) <= exp(abs(z))- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Exp[z]- 1] <= Exp[Abs[z]]- 1</syntaxhighlight> || Skipped - no semantic math || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.5.E16 4.5.E16] || [[Item:Q1569|<math>e^{|z|}-1 \leq |z|e^{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{|z|}-1 \leq |z|e^{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(abs(z))- 1 <= abs(z)*exp(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Abs[z]]- 1 <= Abs[z]*Exp[Abs[z]]</syntaxhighlight> || Error || Failure || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.7.E1 4.7.E1] || [[Item:Q1577|<math>\deriv{}{z}\ln@@{z} = \frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.7.E2 4.7.E2] || [[Item:Q1578|<math>\deriv{}{z}\Ln@@{z} = \frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\Ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.7.E3 4.7.E3] || [[Item:Q1579|<math>\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.7.E4 4.7.E4] || [[Item:Q1580|<math>\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.7.E7 4.7.E7] || [[Item:Q1583|<math>\deriv{}{z}e^{z} = e^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{z} = e^{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(z), z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[z], z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.7.E8 4.7.E8] || [[Item:Q1584|<math>\deriv{}{z}e^{az} = ae^{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{az} = ae^{az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(a*z), z) = a*exp(a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[a*z], z] == a*Exp[a*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.7.E9 4.7.E9] || [[Item:Q1585|<math>\deriv{}{z}a^{z} = a^{z}\ln@@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}a^{z} = a^{z}\ln@@{a}</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff((a)^(z), z) = (a)^(z)* ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(a)^(z), z] == (a)^(z)* Log[a]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.7.E10 4.7.E10] || [[Item:Q1586|<math>\deriv{}{z}z^{a} = az^{a-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}z^{a} = az^{a-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((z)^(a), z) = a*(z)^(a - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(z)^(a), z] == a*(z)^(a - 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.7.E14 4.7.E14] || [[Item:Q1590|<math>\deriv[2]{w}{z} = aw</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z} = aw</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)]) = a*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}] == a*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.7.E15 4.7.E15] || [[Item:Q1591|<math>w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.8.E1 4.8.E1] || [[Item:Q1592|<math>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .133199999e-10-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E2 4.8.E2] || [[Item:Q1593|<math>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}+\phase@@{z_{2}}, \phase@@{z_{1}}+\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 59] || Successful [Tested: 75]
|-
| [https://dlmf.nist.gov/4.8.E3 4.8.E3] || [[Item:Q1594|<math>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [25 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E4 4.8.E4] || [[Item:Q1595|<math>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}</syntaxhighlight> || <math>-\pi \leq \phase@@{z_{1}}-\phase@@{z_{2}}, \phase@@{z_{1}}-\phase@@{z_{2}} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308*I
Test Values: {z[1] = 2, z[2] = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [11 / 86]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E5 4.8.E5] || [[Item:Q1596|<math>\Ln@{z^{n}} = n\Ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{z^{n}} = n\Ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .133199999e-10+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E6 4.8.E6] || [[Item:Q1597|<math>\ln@{z^{n}} = n\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{z^{n}} = n\ln@@{z}</syntaxhighlight> || <math>-\pi \leq n\phase@@{z}, n\phase@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((z)^(n)) = n*ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(z)^(n)] == n*Log[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 17]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E7 4.8.E7] || [[Item:Q1598|<math>\ln@@{\frac{1}{z}} = -\ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\frac{1}{z}} = -\ln@@{z}</syntaxhighlight> || <math>|\phase@@{z}| \leq \pi</math> || <syntaxhighlight lang=mathematica>ln((1)/(z)) = - ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[1,z]] == - Log[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.8.E8 4.8.E8] || [[Item:Q1599|<math>\Ln@{\exp@@{z}} = z+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{\exp@@{z}} = z+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z + 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z + 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E9 4.8.E9] || [[Item:Q1600|<math>\ln@{\exp@@{z}} = z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\exp@@{z}} = z</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z}, \imagpart@@{z} \leq \pi</math> || <syntaxhighlight lang=mathematica>ln(exp(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Exp[z]] == z</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || [[Item:Q1601|<math>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = exp(ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == Exp[Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.8.E10 4.8.E10] || [[Item:Q1601|<math>\exp@{\Ln@@{z}} = z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{\Ln@@{z}} = z</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(ln(z)) = z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Log[z]] == z</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.8.E11 4.8.E11] || [[Item:Q1602|<math>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E12 4.8.E12] || [[Item:Q1603|<math>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [126 / 126]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.8.E13 4.8.E13] || [[Item:Q1604|<math>\ln@{a^{x}} = x\ln@@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{a^{x}} = x\ln@@{a}</syntaxhighlight> || <math>a > 0</math> || <syntaxhighlight lang=mathematica>ln((a)^(x)) = x*ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[(a)^(x)] == x*Log[a]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E14 4.8.E14] || [[Item:Q1605|<math>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}</syntaxhighlight> || <math>a \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E15 4.8.E15] || [[Item:Q1606|<math>a^{z}b^{z} = (ab)^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a^{z}b^{z} = (ab)^{z}</syntaxhighlight> || <math>-\pi \leq \phase@@{a}+\phase@@{b}, \phase@@{a}+\phase@@{b} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) = (a*b)^(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a)^(z)* (b)^(z) == (a*b)^(z)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E16 4.8.E16] || [[Item:Q1607|<math>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.8.E17 4.8.E17] || [[Item:Q1608|<math>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}</syntaxhighlight> || <math>-\pi \leq \imagpart@@{z_{1}}, \imagpart@@{z_{1}} \leq \pi</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(exp(z[1]))^(z[2]) = exp(z[1]*z[2])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.10.E1 4.10.E1] || [[Item:Q1616|<math>\int\frac{\diff{z}}{z} = \ln@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{z} = \ln@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(z), z) = ln(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,z], z, GenerateConditions->None] == Log[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.10.E2 4.10.E2] || [[Item:Q1617|<math>\int\ln@@{z}\diff{z} = z\ln@@{z}-z</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\ln@@{z}\diff{z} = z\ln@@{z}-z</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(z), z) = z*ln(z)- z</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[z], z, GenerateConditions->None] == z*Log[z]- z</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.10.E3 4.10.E3] || [[Item:Q1618|<math>\int z^{n}\ln@@{z}\diff{z} = \frac{z^{n+1}}{n+1}\ln@@{z}-\frac{z^{n+1}}{(n+1)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{n}\ln@@{z}\diff{z} = \frac{z^{n+1}}{n+1}\ln@@{z}-\frac{z^{n+1}}{(n+1)^{2}}</syntaxhighlight> || <math>n \neq -1</math> || <syntaxhighlight lang=mathematica>int((z)^(n)* ln(z), z) = ((z)^(n + 1))/(n + 1)*ln(z)-((z)^(n + 1))/((n + 1)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^(n)* Log[z], z, GenerateConditions->None] == Divide[(z)^(n + 1),n + 1]*Log[z]-Divide[(z)^(n + 1),(n + 1)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.10.E4 4.10.E4] || [[Item:Q1619|<math>\int\frac{\diff{z}}{z\ln@@{z}} = \ln@{\ln@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{z\ln@@{z}} = \ln@{\ln@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(z*ln(z)), z) = ln(ln(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,z*Log[z]], z, GenerateConditions->None] == Log[Log[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.10.E5 4.10.E5] || [[Item:Q1620|<math>\int_{0}^{1}\frac{\ln@@{t}}{1-t}\diff{t} = -\frac{\pi^{2}}{6}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{\ln@@{t}}{1-t}\diff{t} = -\frac{\pi^{2}}{6}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((ln(t))/(1 - t), t = 0..1) = -((Pi)^(2))/(6)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Log[t],1 - t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),6]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.10.E6 4.10.E6] || [[Item:Q1621|<math>\int_{0}^{1}\frac{\ln@@{t}}{1+t}\diff{t} = -\frac{\pi^{2}}{12}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{\ln@@{t}}{1+t}\diff{t} = -\frac{\pi^{2}}{12}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((ln(t))/(1 + t), t = 0..1) = -((Pi)^(2))/(12)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Log[t],1 + t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),12]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.10.E8 4.10.E8] || [[Item:Q1623|<math>\int e^{az}\diff{z} = \frac{e^{az}}{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{az}\diff{z} = \frac{e^{az}}{a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*z), z) = (exp(a*z))/(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*z], z, GenerateConditions->None] == Divide[Exp[a*z],a]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.10.E9 4.10.E9] || [[Item:Q1624|<math>\int\frac{\diff{z}}{e^{az}+b} = \frac{1}{ab}(az-\ln@{e^{az}+b})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{e^{az}+b} = \frac{1}{ab}(az-\ln@{e^{az}+b})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(exp(a*z)+ b), z) = (1)/(a*b)*(a*z - ln(exp(a*z)+ b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Exp[a*z]+ b], z, GenerateConditions->None] == Divide[1,a*b]*(a*z - Log[Exp[a*z]+ b])</syntaxhighlight> || Failure || Successful || Successful [Tested: 252] || Successful [Tested: 252]
|-
| [https://dlmf.nist.gov/4.10.E10 4.10.E10] || [[Item:Q1625|<math>\int\frac{e^{az}-1}{e^{az}+1}\diff{z} = \frac{2}{a}\ln@{e^{az/2}+e^{-az/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{e^{az}-1}{e^{az}+1}\diff{z} = \frac{2}{a}\ln@{e^{az/2}+e^{-az/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((exp(a*z)- 1)/(exp(a*z)+ 1), z) = (2)/(a)*ln(exp(a*z/2)+ exp(- a*z/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[a*z]- 1,Exp[a*z]+ 1], z, GenerateConditions->None] == Divide[2,a]*Log[Exp[a*z/2]+ Exp[- a*z/2]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 42] || Successful [Tested: 42]
|-
| [https://dlmf.nist.gov/4.10.E11 4.10.E11] || [[Item:Q1626|<math>\int_{-\infty}^{\infty}e^{-cx^{2}}\diff{x} = \sqrt{\frac{\pi}{c}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}e^{-cx^{2}}\diff{x} = \sqrt{\frac{\pi}{c}}</syntaxhighlight> || <math>\realpart@@{c} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- c*(x)^(2)), x = - infinity..infinity) = sqrt((Pi)/(c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- c*(x)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,c]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.10.E12 4.10.E12] || [[Item:Q1627|<math>\int_{0}^{\ln@@{2}}\frac{xe^{x}}{e^{x}-1}\diff{x} = \frac{\pi^{2}}{12}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\ln@@{2}}\frac{xe^{x}}{e^{x}-1}\diff{x} = \frac{\pi^{2}}{12}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((x*exp(x))/(exp(x)- 1), x = 0..ln(2)) = ((Pi)^(2))/(12)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[x*Exp[x],Exp[x]- 1], {x, 0, Log[2]}, GenerateConditions->None] == Divide[(Pi)^(2),12]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.10.E13 4.10.E13] || [[Item:Q1628|<math>\int_{0}^{\infty}\frac{\diff{x}}{e^{x}+1} = \ln@@{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\diff{x}}{e^{x}+1} = \ln@@{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(exp(x)+ 1), x = 0..infinity) = ln(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Exp[x]+ 1], {x, 0, Infinity}, GenerateConditions->None] == Log[2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.12.E1 4.12.E1] || [[Item:Q1629|<math>\phi(x+1) = e^{\phi(x)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(x+1) = e^{\phi(x)}</syntaxhighlight> || <math>-1 < x, x < \infty</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(x + 1) = exp(phi(x))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][x + 1] == Exp[\[Phi][x]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.12.E2 4.12.E2] || [[Item:Q1630|<math>\phi(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(0) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.12.E3 4.12.E3] || [[Item:Q1631|<math>\psi(e^{x}) = 1+\psi(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\psi(e^{x}) = 1+\psi(x)</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">psi(exp(x)) = 1 + psi(x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Psi][Exp[x]] == 1 + \[Psi][x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.12.E4 4.12.E4] || [[Item:Q1632|<math>\psi(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\psi(0) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">psi(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Psi][0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.12.E5 4.12.E5] || [[Item:Q1633|<math>\phi(x) = \psi(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(x) = \psi(x)</syntaxhighlight> || <math>0 \leq x, x \leq 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(x) = psi(x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][x] == \[Psi][x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.12.E6 4.12.E6] || [[Item:Q1634|<math>\phi(x) = \ln@{x+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(x) = \ln@{x+1}</syntaxhighlight> || <math>-1 < x, x < 0</math> || <syntaxhighlight lang=mathematica>phi(x) = ln(x + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][x] == Log[x + 1]</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.12.E8 4.12.E8] || [[Item:Q1636|<math>\psi(x) = e^{x}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\psi(x) = e^{x}-1</syntaxhighlight> || <math>-\infty < x, x < 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">psi(x) = exp(x)- 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Psi][x] == Exp[x]- 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.13.E1 4.13.E1] || [[Item:Q1639|<math>We^{W} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>We^{W} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>W*exp(W) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>W*Exp[W] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .736973970+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.763026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.096603674+.1092863076*I
Test Values: {W = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.2630260306572938, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7369739693427062, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || [[Item:Q1640|<math>\LambertWp@{-1/e} = \LambertWm@{-1/e}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{-1/e} = \LambertWm@{-1/e}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, - 1/E] == ProductLog[-1, - 1/E]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || [[Item:Q1640|<math>\LambertWm@{-1/e} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWm@{-1/e} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(-1, - 1/exp(1)) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[-1, - 1/E] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.13#Ex2 4.13#Ex2] || [[Item:Q1641|<math>\LambertWp@{0} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, 0] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.13#Ex3 4.13#Ex3] || [[Item:Q1642|<math>\LambertWp@{e} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.13#Ex4 4.13#Ex4] || [[Item:Q1643|<math>U+\ln@@{U} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U+\ln@@{U} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U + ln(U) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>U + Log[U] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6339745958+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3660254042+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.133974596+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.000000000+2.960420506*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.6339745962155613, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.3660254037844387, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || [[Item:Q1644|<math>U = U(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U = U(x)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U = U*(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>U == U*(x)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4330127020-.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8660254040-.5000000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2500000000-.4330127020*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4330127018922193, -0.24999999999999994]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || [[Item:Q1644|<math>U(x) = \LambertW@{e^{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U(x) = \LambertW@{e^{x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U(x) = LambertW(exp(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>U[x] == ProductLog[Exp[x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .34078386e-1+.7500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3332359062+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .174905209+1.*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.014959720+1.299038106*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0340783855511575, 0.7499999999999999]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.333235906269531, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.13.E5 4.13.E5] || [[Item:Q1646|<math>\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</syntaxhighlight> || <math>|x| < \dfrac{1}{e}</math> || <syntaxhighlight lang=mathematica>LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 0]
|-
| [https://dlmf.nist.gov/4.13.E6 4.13.E6] || [[Item:Q1647|<math>\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</syntaxhighlight> || <math>|t| < 2\sqrt{\pi}</math> || <syntaxhighlight lang=mathematica>LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [60 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [60 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.13.E7 4.13.E7] || [[Item:Q1648|<math>c_{0} = 1,c_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0} = 1,c_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0] = 1; c[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0] == 1
Subscript[c, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.13.E8 4.13.E8] || [[Item:Q1649|<math>c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</syntaxhighlight> || <math>n \geq 2</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.13.E9 4.13.E9] || [[Item:Q1650|<math>1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/4.14.E1 4.14.E1] || [[Item:Q1653|<math>\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (exp(I*z)- exp(- I*z))/(2*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E2 4.14.E2] || [[Item:Q1654|<math>\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (exp(I*z)+ exp(- I*z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E3 4.14.E3] || [[Item:Q1655|<math>\cos@@{z}+ i\sin@@{z} = e^{+ iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z}+ i\sin@@{z} = e^{+ iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z)+ I*sin(z) = exp(+ I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z]+ I*Sin[z] == Exp[+ I*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E3 4.14.E3] || [[Item:Q1655|<math>\cos@@{z}- i\sin@@{z} = e^{- iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z}- i\sin@@{z} = e^{- iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z)- I*sin(z) = exp(- I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z]- I*Sin[z] == Exp[- I*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E4 4.14.E4] || [[Item:Q1656|<math>\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(z) = (sin(z))/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[z] == Divide[Sin[z],Cos[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E5 4.14.E5] || [[Item:Q1657|<math>\csc@@{z} = \frac{1}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@@{z} = \frac{1}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(z) = (1)/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[z] == Divide[1,Sin[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E6 4.14.E6] || [[Item:Q1658|<math>\sec@@{z} = \frac{1}{\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@@{z} = \frac{1}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(z) = (1)/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[z] == Divide[1,Cos[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E7 4.14.E7] || [[Item:Q1659|<math>\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(z) = (cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[z] == Divide[Cos[z],Sin[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E7 4.14.E7] || [[Item:Q1659|<math>\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))/(sin(z)) = (1)/(tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.14.E8 4.14.E8] || [[Item:Q1660|<math>\sin@{z+2k\pi} = \sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{z+2k\pi} = \sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z + 2*k*Pi) = sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z + 2*k*Pi] == Sin[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.14.E9 4.14.E9] || [[Item:Q1661|<math>\cos@{z+2k\pi} = \cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{z+2k\pi} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z + 2*k*Pi) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z + 2*k*Pi] == Cos[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.14.E10 4.14.E10] || [[Item:Q1662|<math>\tan@{z+k\pi} = \tan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{z+k\pi} = \tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(z + k*Pi) = tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[z + k*Pi] == Tan[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.15.E1 4.15.E1] || [[Item:Q1663|<math>\cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x + I*y) = sin(x +(1)/(2)*Pi + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x + I*y] == Sin[x +Divide[1,2]*Pi + I*y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.15.E2 4.15.E2] || [[Item:Q1664|<math>\cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(x + I*y) = - tan(x +(1)/(2)*Pi + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[x + I*y] == - Tan[x +Divide[1,2]*Pi + I*y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.15.E3 4.15.E3] || [[Item:Q1665|<math>\sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(x + I*y) = csc(x +(1)/(2)*Pi + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[x + I*y] == Csc[x +Divide[1,2]*Pi + I*y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.17.E1 4.17.E1] || [[Item:Q1666|<math>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sin(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.17.E2 4.17.E2] || [[Item:Q1667|<math>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tan(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.17.E3 4.17.E3] || [[Item:Q1668|<math>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.18.E1 4.18.E1] || [[Item:Q1669|<math>\frac{2x}{\pi} \leq \sin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2x}{\pi} \leq \sin@@{x}</syntaxhighlight> || <math>0 \leq x, x \leq \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>(2*x)/(Pi) <= sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*x,Pi] <= Sin[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.18.E1 4.18.E1] || [[Item:Q1669|<math>\sin@@{x} \leq x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{x} \leq x</syntaxhighlight> || <math>0 \leq x, x \leq \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>sin(x) <= x</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x] <= x</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.18.E2 4.18.E2] || [[Item:Q1670|<math>x \leq \tan@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x \leq \tan@@{x}</syntaxhighlight> || <math>0 \leq x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>x <= tan(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x <= Tan[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.18.E3 4.18.E3] || [[Item:Q1671|<math>\cos@@{x} \leq \frac{\sin@@{x}}{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{x} \leq \frac{\sin@@{x}}{x}</syntaxhighlight> || <math>0 \leq x, x \leq \pi</math> || <syntaxhighlight lang=mathematica>cos(x) <= (sin(x))/(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x] <= Divide[Sin[x],x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.18.E3 4.18.E3] || [[Item:Q1671|<math>\frac{\sin@@{x}}{x} \leq 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@@{x}}{x} \leq 1</syntaxhighlight> || <math>0 \leq x, x \leq \pi</math> || <syntaxhighlight lang=mathematica>(sin(x))/(x) <= 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[x],x] <= 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.18.E4 4.18.E4] || [[Item:Q1672|<math>\pi < \frac{\sin@{\pi x}}{x(1-x)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi < \frac{\sin@{\pi x}}{x(1-x)}</syntaxhighlight> || <math>0 < x, x < 1</math> || <syntaxhighlight lang=mathematica>Pi < (sin(Pi*x))/(x*(1 - x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi < Divide[Sin[Pi*x],x*(1 - x)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.18.E4 4.18.E4] || [[Item:Q1672|<math>\frac{\sin@{\pi x}}{x(1-x)} \leq 4</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sin@{\pi x}}{x(1-x)} \leq 4</syntaxhighlight> || <math>0 < x, x < 1</math> || <syntaxhighlight lang=mathematica>(sin(Pi*x))/(x*(1 - x)) <= 4</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sin[Pi*x],x*(1 - x)] <= 4</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.18.E5 4.18.E5] || [[Item:Q1673|<math>|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(y)) <= abs(sin(x + y*I)) <= cosh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[y]] <= Abs[Sin[x + y*I]] <= Cosh[y]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.18.E6 4.18.E6] || [[Item:Q1674|<math>|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sinh(y)) <= abs(cos(x + y*I)) <= cosh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sinh[y]] <= Abs[Cos[x + y*I]] <= Cosh[y]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.18.E7 4.18.E7] || [[Item:Q1675|<math>|\csc@@{z}| \leq \csch@@{|y|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\csc@@{z}| \leq \csch@@{|y|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(csc(x + y*I)) <= csch(abs(y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Csc[x + y*I]] <= Csch[Abs[y]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.18.E8 4.18.E8] || [[Item:Q1676|<math>|\cos@@{z}| \leq \cosh@@{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| \leq \cosh@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(z)) <= cosh(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[z]] <= Cosh[Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.18.E9 4.18.E9] || [[Item:Q1677|<math>|\sin@@{z}| \leq \sinh@@{|z|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| \leq \sinh@@{|z|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(z)) <= sinh(abs(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[z]] <= Sinh[Abs[z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.18#Ex1 4.18#Ex1] || [[Item:Q1678|<math>|\cos@@{z}| < 2</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| < 2</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(z)) < 2</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[z]] < 2</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.18#Ex2 4.18#Ex2] || [[Item:Q1679|<math>|\sin@@{z}| \leq \tfrac{6}{5}|z|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| \leq \tfrac{6}{5}|z|</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>abs(sin(z)) <= (6)/(5)*abs(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[z]] <= Divide[6,5]*Abs[z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.19.E7 4.19.E7] || [[Item:Q1686|<math>\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \pi</math> || <syntaxhighlight lang=mathematica>ln((sin(z))/(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Sin[z],z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.19.E8 4.19.E8] || [[Item:Q1687|<math>\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln(cos(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Cos[z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/4.19.E9 4.19.E9] || [[Item:Q1688|<math>\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln((tan(z))/(z)) = sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Tan[z],z]] == Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/4.20.E1 4.20.E1] || [[Item:Q1689|<math>\deriv{}{z}\sin@@{z} = \cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\sin@@{z} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sin(z), z) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sin[z], z] == Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.20.E2 4.20.E2] || [[Item:Q1690|<math>\deriv{}{z}\cos@@{z} = -\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\cos@@{z} = -\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(cos(z), z) = - sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Cos[z], z] == - Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.20.E3 4.20.E3] || [[Item:Q1691|<math>\deriv{}{z}\tan@@{z} = \sec^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\tan@@{z} = \sec^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(tan(z), z) = (sec(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Tan[z], z] == (Sec[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.20.E4 4.20.E4] || [[Item:Q1692|<math>\deriv{}{z}\csc@@{z} = -\csc@@{z}\cot@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\csc@@{z} = -\csc@@{z}\cot@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(csc(z), z) = - csc(z)*cot(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Csc[z], z] == - Csc[z]*Cot[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.20.E5 4.20.E5] || [[Item:Q1693|<math>\deriv{}{z}\sec@@{z} = \sec@@{z}\tan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\sec@@{z} = \sec@@{z}\tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sec(z), z) = sec(z)*tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sec[z], z] == Sec[z]*Tan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.20.E6 4.20.E6] || [[Item:Q1694|<math>\deriv{}{z}\cot@@{z} = -\csc^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\cot@@{z} = -\csc^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(cot(z), z) = - (csc(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Cot[z], z] == - (Csc[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.20.E7 4.20.E7] || [[Item:Q1695|<math>\deriv[n]{}{z}\sin@@{z} = \sin@{z+\tfrac{1}{2}n\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\sin@@{z} = \sin@{z+\tfrac{1}{2}n\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(sin(z), [z$(n)]) = sin(z +(1)/(2)*n*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Sin[z], {z, n}] == Sin[z +Divide[1,2]*n*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.20.E8 4.20.E8] || [[Item:Q1696|<math>\deriv[n]{}{z}\cos@@{z} = \cos@{z+\tfrac{1}{2}n\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\cos@@{z} = \cos@{z+\tfrac{1}{2}n\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(cos(z), [z$(n)]) = cos(z +(1)/(2)*n*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Cos[z], {z, n}] == Cos[z +Divide[1,2]*n*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.20.E9 4.20.E9] || [[Item:Q1697|<math>\deriv[2]{w}{z}+a^{2}w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+a^{2}w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+ (a)^(2)* w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+ (a)^(2)* w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.20.E10 4.20.E10] || [[Item:Q1698|<math>\left(\deriv{w}{z}\right)^{2}+a^{2}w^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\deriv{w}{z}\right)^{2}+a^{2}w^{2} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(diff(w, z))^(2)+ (a)^(2)* (w)^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[w, z])^(2)+ (a)^(2)* (w)^(2) == 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [272 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.20.E11 4.20.E11] || [[Item:Q1699|<math>\deriv{w}{z}-a^{2}w^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{w}{z}-a^{2}w^{2} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, z)- (a)^(2)* (w)^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, z]- (a)^(2)* (w)^(2) == 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.20.E12 4.20.E12] || [[Item:Q1700|<math>w = A\cos@{az}+B\sin@{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = A\cos@{az}+B\sin@{az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = A*cos(a*z)+ B*sin(a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == A*Cos[a*z]+ B*Sin[a*z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.138704571+1.826991634*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.586785764-.8180862806*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.979513822-1.625744019*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8007246334+.1975056737*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.138704570618858, 1.8269916342928783]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.5867857625486925, -0.8180862808059206]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.20.E13 4.20.E13] || [[Item:Q1701|<math>w = (1/a)\sin@{az+c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = (1/a)\sin@{az+c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = (1/a)*sin(a*z + c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == (1/a)*Sin[a*z + c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5761075690+1.016359912*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.288669860e-1-.3275339707*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1554713530-.2104590960*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6937358929+1.037178419*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.5761075684969701, 1.0163599120046827]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.028866985825810376, -0.3275339701177746]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.20.E14 4.20.E14] || [[Item:Q1702|<math>w = (1/a)\tan@{az+c}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = (1/a)\tan@{az+c}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = (1/a)*tan(a*z + c)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == (1/a)*Tan[a*z + c]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.000937702+.460093509e-1*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7686167751-.1524919258*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9655903492+1.180557377*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7863384613+.9337431086*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.0009377022129278, 0.04600935086169866]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7686167748870922, -0.1524919257161706]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/4.21.E1 4.21.E1] || [[Item:Q1703|<math>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || [[Item:Q1704|<math>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E2 4.21.E2] || [[Item:Q1704|<math>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || [[Item:Q1705|<math>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E3 4.21.E3] || [[Item:Q1705|<math>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || [[Item:Q1706|<math>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E4 4.21.E4] || [[Item:Q1706|<math>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || [[Item:Q1707|<math>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E5 4.21.E5] || [[Item:Q1707|<math>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E6 4.21.E6] || [[Item:Q1708|<math>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E7 4.21.E7] || [[Item:Q1709|<math>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E8 4.21.E8] || [[Item:Q1710|<math>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E9 4.21.E9] || [[Item:Q1711|<math>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || [[Item:Q1712|<math>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E10 4.21.E10] || [[Item:Q1712|<math>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || [[Item:Q1713|<math>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E11 4.21.E11] || [[Item:Q1713|<math>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E12 4.21.E12] || [[Item:Q1714|<math>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{z}+\cos^{2}@@{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(z))^(2)+ (cos(z))^(2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[z])^(2)+ (Cos[z])^(2) == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E13 4.21.E13] || [[Item:Q1715|<math>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec^{2}@@{z} = 1+\tan^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sec(z))^(2) = 1 + (tan(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sec[z])^(2) == 1 + (Tan[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E14 4.21.E14] || [[Item:Q1716|<math>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc^{2}@@{z} = 1+\cot^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csc(z))^(2) = 1 + (cot(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csc[z])^(2) == 1 + (Cot[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E15 4.21.E15] || [[Item:Q1717|<math>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*sin(v) = cos(u - v)- cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E16 4.21.E16] || [[Item:Q1718|<math>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E17 4.21.E17] || [[Item:Q1719|<math>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E18 4.21.E18] || [[Item:Q1720|<math>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E19 4.21.E19] || [[Item:Q1721|<math>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E20 4.21.E20] || [[Item:Q1722|<math>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 100]
|-
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || [[Item:Q1723|<math>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5419255224+.8655716642*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.541925522457336, 0.8655716640572733]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.8655770337160631, -0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.21.E21 4.21.E21] || [[Item:Q1723|<math>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8655770340+.4585952894*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5419255224-.8655716642*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.363277520
Test Values: {z = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4948079184
Test Values: {z = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8655770337160631, 0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.5419255224573365, -0.8655716640572731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || [[Item:Q1724|<math>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E22 4.21.E22] || [[Item:Q1724|<math>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.872439139-.2119959694*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.122352334+.2210167318*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.872439139-.2119959694*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.872439138961815, -0.2119959693051084]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.1223523339444896, 0.22101673165487346]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320616*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849969, 0.8595320613685856]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.858086492859854, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320616*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.863192920
Test Values: {z = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5106838424
Test Values: {z = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.858086492859854, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.4211742148849973, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4211742148-.8595320615*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8580864930+.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.42117421488499684, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.8580864928598539, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.8580864930-.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.863192920
Test Values: {z = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5106838424
Test Values: {z = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [5 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8580864928598539, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.4211742148849972, 0.8595320613685855]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E23 4.21.E23] || [[Item:Q1725|<math>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E24 4.21.E24] || [[Item:Q1726|<math>\sin@{-z} = -\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{-z} = -\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(- z) = - sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[- z] == - Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E25 4.21.E25] || [[Item:Q1727|<math>\cos@{-z} = \cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{-z} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(- z) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[- z] == Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E26 4.21.E26] || [[Item:Q1728|<math>\tan@{-z} = -\tan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{-z} = -\tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(- z) = - tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[- z] == - Tan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || [[Item:Q1729|<math>\sin@{2z} = 2\sin@@{z}\cos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{2z} = 2\sin@@{z}\cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(2*z) = 2*sin(z)*cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[2*z] == 2*Sin[z]*Cos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E27 4.21.E27] || [[Item:Q1729|<math>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>\cos@{2z} = 2\cos^{2}@@{z}-1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{2z} = 2\cos^{2}@@{z}-1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(2*z) = 2*(cos(z))^(2)- 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*z] == 2*(Cos[z])^(2)- 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E28 4.21.E28] || [[Item:Q1730|<math>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E29 4.21.E29] || [[Item:Q1731|<math>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E30 4.21.E30] || [[Item:Q1732|<math>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E31 4.21.E31] || [[Item:Q1733|<math>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E32 4.21.E32] || [[Item:Q1734|<math>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E33 4.21.E33] || [[Item:Q1735|<math>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21.E34 4.21.E34] || [[Item:Q1736|<math>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/4.21.E35 4.21.E35] || [[Item:Q1737|<math>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.21#Ex1 4.21#Ex1] || [[Item:Q1738|<math>\sin@@{z} = \frac{2t}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{2t}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (2*t)/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[2*t,1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.782057258+.3375964631*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.593808282-.8586367171*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .640965885e-1-.3375964631*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.782057257377061, 0.33759646322287]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.25234556426971166, 0.8586367168171449]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21#Ex2 4.21#Ex2] || [[Item:Q1739|<math>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (1 - (t)^(2))/(1 + (t)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1151584036726099, -0.3969495502290325]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.612380901479495, 0.46907537626850365]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.21.E37 4.21.E37] || [[Item:Q1741|<math>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E38 4.21.E38] || [[Item:Q1742|<math>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E39 4.21.E39] || [[Item:Q1743|<math>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E40 4.21.E40] || [[Item:Q1744|<math>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || [[Item:Q1745|<math>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E41 4.21.E41] || [[Item:Q1745|<math>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || [[Item:Q1746|<math>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E42 4.21.E42] || [[Item:Q1746|<math>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.21.E43 4.21.E43] || [[Item:Q1747|<math>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.22.E1 4.22.E1] || [[Item:Q1748|<math>\sin@@{z} = z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}\pi^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}\pi^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = z*product(1 -((z)^(2))/((n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == z*Product[1 -Divide[(z)^(2),(n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.22.E2 4.22.E2] || [[Item:Q1749|<math>\cos@@{z} = \prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = product(1 -(4*(z)^(2))/((2*n - 1)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Product[1 -Divide[4*(z)^(2),(2*n - 1)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.22.E3 4.22.E3] || [[Item:Q1750|<math>\cot@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}-n^{2}\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}-n^{2}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(z) = (1)/(z)+ 2*z*sum((1)/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[z] == Divide[1,z]+ 2*z*Sum[Divide[1,(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.22.E4 4.22.E4] || [[Item:Q1751|<math>\csc^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(csc(z))^(2) = sum((1)/((z - n*Pi)^(2)), n = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Csc[z])^(2) == Sum[Divide[1,(z - n*Pi)^(2)], {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.22.E5 4.22.E5] || [[Item:Q1752|<math>\csc@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}-n^{2}\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}-n^{2}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(z) = (1)/(z)+ 2*z*sum(((- 1)^(n))/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[z] == Divide[1,z]+ 2*z*Sum[Divide[(- 1)^(n),(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E1 4.23.E1] || [[Item:Q1753|<math>\Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E2 4.23.E2] || [[Item:Q1754|<math>\Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, z, 1}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E3 4.23.E3] || [[Item:Q1755|<math>\Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[z] == Integrate[Divide[1,1 + (t)^(2)], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E4 4.23.E4] || [[Item:Q1756|<math>\Acsc@@{z} = \Asin@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acsc@@{z} = \Asin@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[z] == ArcSin[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E5 4.23.E5] || [[Item:Q1757|<math>\Asec@@{z} = \Acos@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asec@@{z} = \Acos@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[z] == ArcCos[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E6 4.23.E6] || [[Item:Q1758|<math>\Acot@@{z} = \Atan@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acot@@{z} = \Atan@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == ArcTan[1/z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E7 4.23.E7] || [[Item:Q1759|<math>\acsc@@{z} = \asin@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsc@@{z} = \asin@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccsc(z) = arcsin(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[z] == ArcSin[1/z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E8 4.23.E8] || [[Item:Q1760|<math>\asec@@{z} = \acos@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@@{z} = \acos@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsec(z) = arccos(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[z] == ArcCos[1/z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E9 4.23.E9] || [[Item:Q1761|<math>\acot@@{z} = \atan@{1/z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@@{z} = \atan@{1/z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(z) = arctan(1/z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == ArcTan[1/z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E10 4.23.E10] || [[Item:Q1762|<math>\asin@{-z} = -\asin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@{-z} = -\asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(- z) = - arcsin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[- z] == - ArcSin[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E11 4.23.E11] || [[Item:Q1763|<math>\acos@{-z} = \pi-\acos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@{-z} = \pi-\acos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(- z) = Pi - arccos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[- z] == Pi - ArcCos[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E12 4.23.E12] || [[Item:Q1764|<math>\atan@{-z} = -\atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{-z} = -\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(- z) = - arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[- z] == - ArcTan[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E13 4.23.E13] || [[Item:Q1765|<math>\acsc@{-z} = -\acsc@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsc@{-z} = -\acsc@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccsc(- z) = - arccsc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[- z] == - ArcCsc[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E14 4.23.E14] || [[Item:Q1766|<math>\asec@{-z} = \pi-\asec@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@{-z} = \pi-\asec@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsec(- z) = Pi - arcsec(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[- z] == Pi - ArcSec[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E15 4.23.E15] || [[Item:Q1767|<math>\acot@{-z} = -\acot@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@{-z} = -\acot@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(- z) = - arccot(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[- z] == - ArcCot[z]</syntaxhighlight> || Failure || Successful || Skip - No test values generated || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E16 4.23.E16] || [[Item:Q1768|<math>\acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(z) = (1)/(2)*Pi - arcsin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == Divide[1,2]*Pi - ArcSin[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E17 4.23.E17] || [[Item:Q1769|<math>\asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsec(z) = (1)/(2)*Pi - arccsc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[z] == Divide[1,2]*Pi - ArcCsc[z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E18 4.23.E18] || [[Item:Q1770|<math>\acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(z) = +(1)/(2)*Pi - arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == +Divide[1,2]*Pi - ArcTan[z]</syntaxhighlight> || Successful || Failure || Skip - symbolical successful subtest || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E18 4.23.E18] || [[Item:Q1770|<math>\acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccot(z) = -(1)/(2)*Pi - arctan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCot[z] == -Divide[1,2]*Pi - ArcTan[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592653589793
Test Values: {Rule[z, Rational[1, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E19 4.23.E19] || [[Item:Q1771|<math>\asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(z) = - I*ln((1 - (z)^(2))^(1/2)+ I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[z] == - I*Log[(1 - (z)^(2))^(1/2)+ I*z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E20 4.23.E20] || [[Item:Q1772|<math>\asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = (1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-1.924847300*I
Test Values: {x = 1.5, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-2.633915794*I
Test Values: {x = 2, x = 3/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E20 4.23.E20] || [[Item:Q1772|<math>\asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = (1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -2.094395102+.1347500000e-10*I
Test Values: {x = .5, x = 3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E21 4.23.E21] || [[Item:Q1773|<math>\asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = -(1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == -Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185308+.7e-9*I
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 4.188790205-.1347500000e-10*I
Test Values: {x = .5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185308+.2e-8*I
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E21 4.23.E21] || [[Item:Q1773|<math>\asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x) = -(1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x] == -Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-1.924847301*I
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.-2.633915796*I
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 2.633915793849633]
Test Values: {Rule[x, -2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E22 4.23.E22] || [[Item:Q1774|<math>\acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(z) = (1)/(2)*Pi + I*ln((1 - (z)^(2))^(1/2)+ I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == Divide[1,2]*Pi + I*Log[(1 - (z)^(2))^(1/2)+ I*z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E23 4.23.E23] || [[Item:Q1775|<math>\acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(z) = - 2*I*ln(((1 + z)/(2))^(1/2)+ I*((1 - z)/(2))^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == - 2*I*Log[(Divide[1 + z,2])^(1/2)+ I*(Divide[1 - z,2])^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E24 4.23.E24] || [[Item:Q1776|<math>\acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = - I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == - I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.924847300*I
Test Values: {x = 1.5, x = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.633915794*I
Test Values: {x = 2, x = 3/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E24 4.23.E24] || [[Item:Q1776|<math>\acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = + I*ln(((x)^(2)- 1)^(1/2)+ x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == + I*Log[((x)^(2)- 1)^(1/2)+ x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.094395102-.1347500000e-10*I
Test Values: {x = .5, x = 3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E25 4.23.E25] || [[Item:Q1777|<math>\acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = Pi - I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == Pi - I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185308-.7e-9*I
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -4.188790205+.1347500000e-10*I
Test Values: {x = .5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185308-.2e-8*I
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E25 4.23.E25] || [[Item:Q1777|<math>\acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x) = Pi + I*ln(((x)^(2)- 1)^(1/2)- x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x] == Pi + I*Log[((x)^(2)- 1)^(1/2)- x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.+1.924847301*I
Test Values: {x = 1.5, x = -2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0.+2.633915796*I
Test Values: {x = 2, x = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, -2.633915793849633]
Test Values: {Rule[x, -2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E26 4.23.E26] || [[Item:Q1778|<math>\atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(z) = (I)/(2)*ln((I + z)/(I - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[z] == Divide[I,2]*Log[Divide[I + z,I - z]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/4.23.E27 4.23.E27] || [[Item:Q1779|<math>\atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(I*y) = +(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[I*y] == +Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592654-.2e-9*I
Test Values: {y = -1.5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.141592654+.2e-9*I
Test Values: {y = -2, y = -3/2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.141592653589793, -1.1102230246251565*^-16]
Test Values: {Rule[y, Rational[-3, 2]]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E27 4.23.E27] || [[Item:Q1779|<math>\atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(I*y) = -(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[I*y] == -Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654+.2e-9*I
Test Values: {y = 1.5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654+.2e-9*I
Test Values: {y = -.5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654-.2e-9*I
Test Values: {y = .5, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654-.2e-9*I
Test Values: {y = 2, y = -3/2}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/4.23.E28 4.23.E28] || [[Item:Q1780|<math>z = \sin@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \sin@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = sin(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Sin[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .70450695e-2+.1624035369*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.358980334+.5284289409*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3589803345-1.203621867*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.725005738-.8375964631*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.007045069484300837, 0.16240353677712993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.3589803343001376, 0.5284289405615687]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E29 4.23.E29] || [[Item:Q1781|<math>z = \cos@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \cos@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = cos(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Cos[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1354823851+.8969495503*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.230543019+1.262974954*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2305430189-.4690758537*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.596568423-.1030504497*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.13548238472721352, 0.8969495502290324]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.230543019057225, 1.2629749540134712]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E30 4.23.E30] || [[Item:Q1782|<math>z = \tan@@{w}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z = \tan@@{w}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z = tan(w)</syntaxhighlight> || <syntaxhighlight lang=mathematica>z == Tan[w]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1520945236-.3500402975*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.213930880+.159851065e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2139308804-1.716065702*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.579956284-1.350040298*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.1520945235384168, -0.3500402971922752]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.2139308802460218, 0.015985106592163567]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E31 4.23.E31] || [[Item:Q1783|<math>w = \Asin@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Asin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcSin[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0806272403869902, -0.15847894846240845]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.2407598364931787, -0.3314429455293106]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E31 4.23.E31] || [[Item:Q1783|<math>\Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[z] == (- 1)^(k)* ArcSin[z]+ k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.5707963267948961, 1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E32 4.23.E32] || [[Item:Q1784|<math>w = \Acos@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Acos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcCos[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.08062724038699065, 1.1584789484624083]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.0795053557191978, 1.3314429455293104]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E32 4.23.E32] || [[Item:Q1784|<math>\Acos@@{z} = +\acos@@{z}+2k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{z} = +\acos@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == + ArcCos[z]+ 2*k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -12.566370614359172
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E32 4.23.E32] || [[Item:Q1784|<math>\Acos@@{z} = -\acos@@{z}+2k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Acos@@{z} = -\acos@@{z}+2k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[z] == - ArcCos[z]+ 2*k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.71238898038469, -1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-10.995574287564276, -1.3169578969248168]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E33 4.23.E33] || [[Item:Q1785|<math>w = \Atan@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \Atan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == ArcTan[z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4023777947836326, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.9636476090008059, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E33 4.23.E33] || [[Item:Q1785|<math>\Atan@@{z} = \atan@@{z}+k\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Atan@@{z} = \atan@@{z}+k\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[z] == ArcTan[z]+ k*Pi</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.141592653589793
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E34 4.23.E34] || [[Item:Q1786|<math>\asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arcsin(x + y*I) = arcsin((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+ I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[x + y*I] == ArcSin[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]+ I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.23.E35 4.23.E35] || [[Item:Q1787|<math>\acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arccos(x + y*I) = arccos((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))- I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[x + y*I] == ArcCos[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]- I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/4.23.E36 4.23.E36] || [[Item:Q1788|<math>\atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>arctan(x + y*I) = (1)/(2)*arctan((2*x)/(1 - (x)^(2)- (y)^(2)))+(1)/(4)*I*ln(((x)^(2)+(y + 1)^(2))/((x)^(2)+(y - 1)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[x + y*I] == Divide[1,2]*ArcTan[Divide[2*x,1 - (x)^(2)- (y)^(2)]]+Divide[1,4]*I*Log[Divide[(x)^(2)+(y + 1)^(2),(x)^(2)+(y - 1)^(2)]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = -1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = -.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948968, 1.1102230246251565*^-16]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.5707963267948968, -1.6653345369377348*^-16]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/4.23.E39 4.23.E39] || [[Item:Q1791|<math>\Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arctan(sinh(x)) = int(sech(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gudermannian[x] == Integrate[Sech[t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arctan(sinh(x)) = 2*arctan(exp(x))-(1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gudermannian[x] == 2*ArcTan[Exp[x]]-Divide[1,2]*Pi</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>2*arctan(exp(x))-(1)/(2)*Pi = arcsin(tanh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*ArcTan[Exp[x]]-Divide[1,2]*Pi == ArcSin[Tanh[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arcsin(tanh(x)) = arccsc(coth(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[Tanh[x]] == ArcCsc[Coth[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arccsc(coth(x)) = arccos(sech(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsc[Coth[x]] == ArcCos[Sech[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arccos(sech(x)) = arcsec(cosh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCos[Sech[x]] == ArcSec[Cosh[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arcsec(cosh(x)) = arctan(sinh(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSec[Cosh[x]] == ArcTan[Sinh[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E40 4.23.E40] || [[Item:Q1792|<math>\atan@{\sinh@@{x}} = \acot@{\csch@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atan@{\sinh@@{x}} = \acot@{\csch@@{x}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>arctan(sinh(x)) = arccot(csch(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTan[Sinh[x]] == ArcCot[Csch[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/4.23.E41 4.23.E41] || [[Item:Q1793|<math>\aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arctanh(sin(x)) = int(sec(t), t = 0..x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>InverseGudermannian[x] == Integrate[Sec[t], {t, 0, x}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arctanh(sin(x)) = ln(tan((1)/(2)*x +(1)/(4)*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>InverseGudermannian[x] == Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln(tan((1)/(2)*x +(1)/(4)*Pi)) = ln(sec(x)+ tan(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] == Log[Sec[x]+ Tan[x]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln(sec(x)+ tan(x)) = arcsinh(tan(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Sec[x]+ Tan[x]] == ArcSinh[Tan[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.046904887125347, 3.141592653589793]
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\asinh@{\tan@@{x}} = \acsch@{\cot@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asinh@{\tan@@{x}} = \acsch@{\cot@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arcsinh(tan(x)) = arccsch(cot(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSinh[Tan[x]] == ArcCsch[Cot[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\acsch@{\cot@@{x}} = \acosh@{\sec@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acsch@{\cot@@{x}} = \acosh@{\sec@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arccsch(cot(x)) = arccosh(sec(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCsch[Cot[x]] == ArcCosh[Sec[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.046904887125347, -3.141592653589793]
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\acosh@{\sec@@{x}} = \asech@{\cos@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\acosh@{\sec@@{x}} = \asech@{\cos@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arccosh(sec(x)) = arcsech(cos(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcCosh[Sec[x]] == ArcSech[Cos[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2]
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\asech@{\cos@@{x}} = \atanh@{\sin@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\asech@{\cos@@{x}} = \atanh@{\sin@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arcsech(cos(x)) = arctanh(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSech[Cos[x]] == ArcTanh[Sin[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0, 3.141592653589793]
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/4.23.E42 4.23.E42] || [[Item:Q1794|<math>\atanh@{\sin@@{x}} = \acoth@{\csc@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\atanh@{\sin@@{x}} = \acoth@{\csc@@{x}}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>arctanh(sin(x)) = arccoth(csc(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcTanh[Sin[x]] == ArcCoth[Csc[x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 2] || Successful [Tested: 2]
|}
</div>

Latest revision as of 12:28, 22 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.2.E1 Ln z = 1 z d t t multivalued-natural-logarithm 𝑧 superscript subscript 1 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\operatorname{Ln}z=\int_{1}^{z}\frac{\mathrm{d}t}{% t}}}
\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
ln(z) = int((1)/(t), t = 1..z)
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E2 ln z = 1 z d t t 𝑧 superscript subscript 1 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\ln z=\int_{1}^{z}\frac{\mathrm{d}t}{t}}}
\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}

ln(z) = int((1)/(t), t = 1..z)
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E3 ln z = ln | z | + i ph z 𝑧 𝑧 imaginary-unit phase 𝑧 {\displaystyle{\displaystyle\ln z=\ln\left|z\right|+\mathrm{i}\operatorname{ph% }z}}
\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}
- π < ph z , ph z < π formulae-sequence 𝜋 phase 𝑧 phase 𝑧 𝜋 {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z<\pi}}
ln(z) = ln(abs(z))+ I*argument(z)
Log[z] == Log[Abs[z]]+ I*Arg[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E4 z = x 𝑧 𝑥 {\displaystyle{\displaystyle z=x}}
z = x
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
(x + y*I) = x
(x + y*I) == x
Skipped - no semantic math Skipped - no semantic math - -
4.2.E5 ln z = ln | z | + i ph z 𝑧 𝑧 imaginary-unit phase 𝑧 {\displaystyle{\displaystyle\ln z=\ln\left|z\right|+\mathrm{i}\operatorname{ph% }z}}
\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}
- π < ph z , ph z π formulae-sequence 𝜋 phase 𝑧 phase 𝑧 𝜋 {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z\leq\pi}}
ln(z) = ln(abs(z))+ I*argument(z)
Log[z] == Log[Abs[z]]+ I*Arg[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E6 Ln z = ln z + 2 k π i multivalued-natural-logarithm 𝑧 𝑧 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}z=\ln z+2k\pi\mathrm{i}}}
\Ln@@{z} = \ln@@{z}+2k\pi\iunit

ln(z) = ln(z)+ 2*k*Pi*I
Log[z] == Log[z]+ 2*k*Pi*I
Failure Failure
Failed [21 / 21]
Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}

Result: -6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.2.E7 ln ( x + i 0 ) = ln | x | + i π 𝑥 imaginary-unit 0 𝑥 𝑖 𝜋 {\displaystyle{\displaystyle\ln\left(x+\mathrm{i}0\right)=\ln|x|+i\pi}}
\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
ln(x + I*0) = ln(abs(x))+ I*Pi
Log[x + I*0] == Log[Abs[x]]+ I*Pi
Failure Successful Error Skip - symbolical successful subtest
4.2.E7 ln ( x - i 0 ) = ln | x | - i π 𝑥 imaginary-unit 0 𝑥 𝑖 𝜋 {\displaystyle{\displaystyle\ln\left(x-\mathrm{i}0\right)=\ln|x|-i\pi}}
\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
ln(x - I*0) = ln(abs(x))- I*Pi
Log[x - I*0] == Log[Abs[x]]- I*Pi
Failure Failure Error Skip - No test values generated
4.2.E8 log a z = ln z / ln a 𝑎 𝑧 𝑧 𝑎 {\displaystyle{\displaystyle\operatorname{log}_{a}z=\ifrac{\ln z}{\ln a}}}
\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}

log[a](z) = (ln(z))/(ln(a))
Log[a,z] == Divide[Log[z],Log[a]]
Successful Successful - Successful [Tested: 42]
4.2.E9 log a z = log b z log b a 𝑎 𝑧 𝑏 𝑧 𝑏 𝑎 {\displaystyle{\displaystyle\operatorname{log}_{a}z=\frac{\operatorname{log}_{% b}z}{\operatorname{log}_{b}a}}}
\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}

log[a](z) = (log[b](z))/(log[b](a))
Log[a,z] == Divide[Log[b,z],Log[b,a]]
Successful Successful - Successful [Tested: 252]
4.2.E10 log a b = 1 log b a 𝑎 𝑏 1 𝑏 𝑎 {\displaystyle{\displaystyle\operatorname{log}_{a}b=\frac{1}{\operatorname{log% }_{b}a}}}
\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}

log[a](b) = (1)/(log[b](a))
Log[a,b] == Divide[1,Log[b,a]]
Successful Successful - Successful [Tested: 36]
4.2.E11 e = 2.71828 18284 59045 23536 𝑒 2.71828 18284 59045 23536 {\displaystyle{\displaystyle e=2.71828\ 18284\ 59045\ 23536\dots}}
e = 2.71828\ 18284\ 59045\ 23536\dots

exp(1) = 2.71828182845904523536
E == 2.71828182845904523536
Successful Successful - Successful [Tested: 1]
4.2.E12 ln e = 1 𝑒 1 {\displaystyle{\displaystyle\ln e=1}}
\ln@@{e} = 1

ln(exp(1)) = 1
Log[E] == 1
Successful Successful - Successful [Tested: 1]
4.2.E13 1 e d t t = 1 superscript subscript 1 𝑒 𝑡 𝑡 1 {\displaystyle{\displaystyle\int_{1}^{e}\frac{\mathrm{d}t}{t}=1}}
\int_{1}^{e}\frac{\diff{t}}{t} = 1

int((1)/(t), t = 1..exp(1)) = 1
Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.2.E14 log e z = ln z 𝑒 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{log}_{e}z=\ln z}}
\genlog{e}@@{z} = \ln@@{z}

log[exp(1)](z) = ln(z)
Log[E,z] == Log[z]
Successful Successful - Successful [Tested: 7]
4.2.E15 log 10 z = ( ln z ) / ( ln 10 ) 10 𝑧 𝑧 10 {\displaystyle{\displaystyle\operatorname{log}_{10}z=\ifrac{(\ln z)}{(\ln 10)}}}
\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}

log[10](z) = (ln(z))/(ln(10))
Log[10,z] == Divide[Log[z],Log[10]]
Successful Successful - Successful [Tested: 7]
4.2.E15 ( ln z ) / ( ln 10 ) = ( log 10 e ) ln z 𝑧 10 10 𝑒 𝑧 {\displaystyle{\displaystyle\ifrac{(\ln z)}{(\ln 10)}=(\operatorname{log}_{10}% e)\ln z}}
\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}

(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)
Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]
Successful Successful - Successful [Tested: 7]
4.2.E16 ln z = ( ln 10 ) log 10 z 𝑧 10 10 𝑧 {\displaystyle{\displaystyle\ln z=(\ln 10)\operatorname{log}_{10}z}}
\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}

ln(z) = (ln(10))*log[10](z)
Log[z] == (Log[10])*Log[10,z]
Successful Successful - Successful [Tested: 7]
4.2.E17 log 10 e = 0.43429 44819 03251 82765 10 𝑒 0.43429 44819 03251 82765 {\displaystyle{\displaystyle\operatorname{log}_{10}e=0.43429\ 44819\ 03251\ 82% 765\dots}}
\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots

log[10](exp(1)) = 0.43429448190325182765
Log[10,E] == 0.43429448190325182765
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
4.2.E18 ln 10 = 2.30258 50929 94045 68401 10 2.30258 50929 94045 68401 {\displaystyle{\displaystyle\ln 10=2.30258\ 50929\ 94045\ 68401\dots}}
\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots

ln(10) = 2.30258509299404568401
Log[10] == 2.30258509299404568401
Successful Successful - Successful [Tested: 1]
4.2.E20 exp ( z + 2 π i ) = exp z 𝑧 2 𝜋 𝑖 𝑧 {\displaystyle{\displaystyle\exp\left(z+2\pi i\right)=\exp z}}
\exp@{z+2\pi i} = \exp@@{z}

exp(z + 2*Pi*I) = exp(z)
Exp[z + 2*Pi*I] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E21 exp ( - z ) = 1 / exp ( z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\exp\left(-z\right)=1/\exp\left(z\right)}}
\exp@{-z} = 1/\exp@{z}

exp(- z) = 1/exp(z)
Exp[- z] == 1/Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E22 | exp z | = exp ( z ) 𝑧 𝑧 {\displaystyle{\displaystyle|\exp z|=\exp\left(\Re z\right)}}
|\exp@@{z}| = \exp@{\realpart@@{z}}

abs(exp(z)) = exp(Re(z))
Abs[Exp[z]] == Exp[Re[z]]
Successful Successful - Successful [Tested: 7]
4.2.E23 ph ( exp z ) = z + 2 k π phase 𝑧 𝑧 2 𝑘 𝜋 {\displaystyle{\displaystyle\operatorname{ph}\left(\exp z\right)=\Im z+2k\pi}}
\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi

argument(exp(z)) = Im(z)+ 2*k*Pi
Arg[Exp[z]] == Im[z]+ 2*k*Pi
Failure Failure
Failed [21 / 21]
Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: -6.283185308
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [7 / 7]
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.2.E24 exp z = e x cos y + i e x sin y 𝑧 superscript 𝑒 𝑥 𝑦 𝑖 superscript 𝑒 𝑥 𝑦 {\displaystyle{\displaystyle\exp z=e^{x}\cos y+ie^{x}\sin y}}
\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}

exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)
Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]
Successful Successful - Successful [Tested: 18]
4.2.E26 z a = exp ( a Ln z ) superscript 𝑧 𝑎 𝑎 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle z^{a}=\exp\left(a\operatorname{Ln}z\right)}}
z^{a} = \exp@{a\Ln@@{z}}
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
(z)^(a) = exp(a*ln(z))
(z)^(a) == Exp[a*Log[z]]
Successful Successful - Successful [Tested: 42]
4.2.E28 z a = exp ( a ln z ) superscript 𝑧 𝑎 𝑎 𝑧 {\displaystyle{\displaystyle z^{a}=\exp\left(a\ln z\right)}}
z^{a} = \exp@{a\ln@@{z}}

(z)^(a) = exp(a*ln(z))
(z)^(a) == Exp[a*Log[z]]
Successful Successful - Successful [Tested: 42]
4.2.E29 | z a | = | z | a exp ( - ( a ) ph z ) superscript 𝑧 𝑎 superscript 𝑧 𝑎 𝑎 phase 𝑧 {\displaystyle{\displaystyle|z^{a}|=|z|^{\Re a}\exp\left(-(\Im a)\operatorname% {ph}z\right)}}
|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}

abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))
Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
4.2.E30 ph ( z a ) = ( a ) ph z + ( a ) ln | z | phase superscript 𝑧 𝑎 𝑎 phase 𝑧 𝑎 𝑧 {\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=(\Re a)% \operatorname{ph}z+(\Im a)\ln|z|}}
\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}

argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))
Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]
Failure Failure
Failed [6 / 42]
Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}

Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.2#Ex1 | z a | = | z | a superscript 𝑧 𝑎 superscript 𝑧 𝑎 {\displaystyle{\displaystyle|z^{a}|=|z|^{a}}}
|z^{a}| = |z|^{a}

abs((z)^(a)) = (abs(z))^(a)
Abs[(z)^(a)] == (Abs[z])^(a)
Skipped - no semantic math Skipped - no semantic math - -
4.2#Ex2 ph ( z a ) = a ph z phase superscript 𝑧 𝑎 𝑎 phase 𝑧 {\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=a\operatorname% {ph}z}}
\phase@{z^{a}} = a\phase@@{z}

argument((z)^(a)) = a*argument(z)
Arg[(z)^(a)] == a*Arg[z]
Failure Failure
Failed [6 / 42]
Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}

Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.2.E32 e z = exp z superscript 𝑒 𝑧 𝑧 {\displaystyle{\displaystyle e^{z}=\exp z}}
e^{z} = \exp@@{z}

exp(z) = exp(z)
Exp[z] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E33 e z = ( exp z ) exp ( 2 k z π i ) superscript 𝑒 𝑧 𝑧 2 𝑘 𝑧 𝜋 imaginary-unit {\displaystyle{\displaystyle e^{z}=(\exp z)\exp\left(2kz\pi\mathrm{i}\right)}}
e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}

exp(z) = (exp(z))*exp(2*k*z*Pi*I)
Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]
Failure Failure
Failed [16 / 21]
Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: .3946493584+.4640329579*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [6 / 7]
Result: Complex[2.0864864733305994, 1.139979110702337]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.3929465878104918, 0.4620308216689905]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.2.E36 - π ( 1 a Ln w ) 𝜋 1 𝑎 multivalued-natural-logarithm 𝑤 {\displaystyle{\displaystyle-\pi\leq\Im\left(\frac{1}{a}\operatorname{Ln}w% \right)}}
-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}

- Pi <= Im((1)/(a)*ln(w))
- Pi <= Im[Divide[1,a]*Log[w]]
Failure Failure
Failed [5 / 60]
Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -.5}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -2}

... skip entries to safe data
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: False
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}

... skip entries to safe data
4.2.E36 ( 1 a Ln w ) π 1 𝑎 multivalued-natural-logarithm 𝑤 𝜋 {\displaystyle{\displaystyle\Im\left(\frac{1}{a}\operatorname{Ln}w\right)\leq% \pi}}
\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi

Im((1)/(a)*ln(w)) <= Pi
Im[Divide[1,a]*Log[w]] <= Pi
Failure Failure
Failed [5 / 60]
Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}

Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}

Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1.5}

Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -.5}

... skip entries to safe data
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: False
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.4.E1 ln 1 = 0 1 0 {\displaystyle{\displaystyle\ln 1=0}}
\ln@@{1} = 0

ln(1) = 0
Log[1] == 0
Successful Successful - Successful [Tested: 1]
4.4.E2 ln ( - 1 + i 0 ) = + π i 1 imaginary-unit 0 𝜋 imaginary-unit {\displaystyle{\displaystyle\ln\left(-1+\mathrm{i}0\right)=+\pi\mathrm{i}}}
\ln@{-1+\iunit 0} = +\pi\iunit

ln(- 1 + I*0) = + Pi*I
Log[- 1 + I*0] == + Pi*I
Successful Successful Skip - symbolical successful subtest Successful [Tested: 1]
4.4.E2 ln ( - 1 - i 0 ) = - π i 1 imaginary-unit 0 𝜋 imaginary-unit {\displaystyle{\displaystyle\ln\left(-1-\mathrm{i}0\right)=-\pi\mathrm{i}}}
\ln@{-1-\iunit 0} = -\pi\iunit

ln(- 1 - I*0) = - Pi*I
Log[- 1 - I*0] == - Pi*I
Failure Failure
Failed [1 / 1]
Result: 6.283185308*I
Test Values: {}

Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {}

4.4.E3 ln ( + i ) = + 1 2 π i imaginary-unit 1 2 𝜋 imaginary-unit {\displaystyle{\displaystyle\ln\left(+\mathrm{i}\right)=+\tfrac{1}{2}\pi% \mathrm{i}}}
\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit

ln(+ I) = +(1)/(2)*Pi*I
Log[+ I] == +Divide[1,2]*Pi*I
Successful Successful - Successful [Tested: 1]
4.4.E3 ln ( - i ) = - 1 2 π i imaginary-unit 1 2 𝜋 imaginary-unit {\displaystyle{\displaystyle\ln\left(-\mathrm{i}\right)=-\tfrac{1}{2}\pi% \mathrm{i}}}
\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit

ln(- I) = -(1)/(2)*Pi*I
Log[- I] == -Divide[1,2]*Pi*I
Successful Successful - Successful [Tested: 1]
4.4.E4 e 0 = 1 superscript 𝑒 0 1 {\displaystyle{\displaystyle e^{0}=1}}
e^{0} = 1

exp(0) = 1
Exp[0] == 1
Skipped - no semantic math Skipped - no semantic math - -
4.4.E5 e + π i = - 1 superscript 𝑒 𝜋 imaginary-unit 1 {\displaystyle{\displaystyle e^{+\pi\mathrm{i}}=-1}}
e^{+\pi\iunit} = -1

exp(+ Pi*I) = - 1
Exp[+ Pi*I] == - 1
Successful Successful - Successful [Tested: 1]
4.4.E5 e - π i = - 1 superscript 𝑒 𝜋 imaginary-unit 1 {\displaystyle{\displaystyle e^{-\pi\mathrm{i}}=-1}}
e^{-\pi\iunit} = -1

exp(- Pi*I) = - 1
Exp[- Pi*I] == - 1
Successful Successful - Successful [Tested: 1]
4.4.E6 e + π i / 2 = + i superscript 𝑒 𝜋 imaginary-unit 2 imaginary-unit {\displaystyle{\displaystyle e^{+\pi\mathrm{i}/2}=+\mathrm{i}}}
e^{+\pi\iunit/2} = +\iunit

exp(+ Pi*I/2) = + I
Exp[+ Pi*I/2] == + I
Successful Successful - Successful [Tested: 1]
4.4.E6 e - π i / 2 = - i superscript 𝑒 𝜋 imaginary-unit 2 imaginary-unit {\displaystyle{\displaystyle e^{-\pi\mathrm{i}/2}=-\mathrm{i}}}
e^{-\pi\iunit/2} = -\iunit

exp(- Pi*I/2) = - I
Exp[- Pi*I/2] == - I
Successful Successful - Successful [Tested: 1]
4.4.E7 e 2 π k i = 1 superscript 𝑒 2 𝜋 𝑘 imaginary-unit 1 {\displaystyle{\displaystyle e^{2\pi k\mathrm{i}}=1}}
e^{2\pi k\iunit} = 1

exp(2*Pi*k*I) = 1
Exp[2*Pi*k*I] == 1
Successful Successful - Successful [Tested: 1]
4.4.E8 e + π i / 3 = 1 2 + i 3 2 superscript 𝑒 𝜋 imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{+\pi\mathrm{i}/3}=\frac{1}{2}+\mathrm{i}\frac{% \sqrt{3}}{2}}}
e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}

exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2)
Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E8 e - π i / 3 = 1 2 - i 3 2 superscript 𝑒 𝜋 imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{-\pi\mathrm{i}/3}=\frac{1}{2}-\mathrm{i}\frac{% \sqrt{3}}{2}}}
e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}

exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2)
Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E9 e + 2 π i / 3 = - 1 2 + i 3 2 superscript 𝑒 2 𝜋 imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{+2\pi\mathrm{i}/3}=-\frac{1}{2}+\mathrm{i}% \frac{\sqrt{3}}{2}}}
e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}

exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2)
Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E9 e - 2 π i / 3 = - 1 2 - i 3 2 superscript 𝑒 2 𝜋 imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{-2\pi\mathrm{i}/3}=-\frac{1}{2}-\mathrm{i}% \frac{\sqrt{3}}{2}}}
e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}

exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2)
Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E10 e + π i / 4 = 1 2 + i 1 2 superscript 𝑒 𝜋 imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{+\pi\mathrm{i}/4}=\frac{1}{\sqrt{2}}+\mathrm{i% }\frac{1}{\sqrt{2}}}}
e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}

exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2))
Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E10 e - π i / 4 = 1 2 - i 1 2 superscript 𝑒 𝜋 imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{-\pi\mathrm{i}/4}=\frac{1}{\sqrt{2}}-\mathrm{i% }\frac{1}{\sqrt{2}}}}
e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}

exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2))
Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E11 e + 3 π i / 4 = - 1 2 + i 1 2 superscript 𝑒 3 𝜋 imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{+3\pi\mathrm{i}/4}=-\frac{1}{\sqrt{2}}+\mathrm% {i}\frac{1}{\sqrt{2}}}}
e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}

exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2))
Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E11 e - 3 π i / 4 = - 1 2 - i 1 2 superscript 𝑒 3 𝜋 imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{-3\pi\mathrm{i}/4}=-\frac{1}{\sqrt{2}}-\mathrm% {i}\frac{1}{\sqrt{2}}}}
e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}

exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2))
Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E12 i + i = e - π / 2 imaginary-unit imaginary-unit superscript 𝑒 𝜋 2 {\displaystyle{\displaystyle{\mathrm{i}^{+\mathrm{i}}}=e^{-\pi/2}}}
\iunit^{+\iunit} = e^{-\pi/2}

(I)^(+ I) = exp(- Pi/2)
(I)^(+ I) == Exp[- Pi/2]
Successful Successful - Successful [Tested: 1]
4.4.E12 i - i = e + π / 2 imaginary-unit imaginary-unit superscript 𝑒 𝜋 2 {\displaystyle{\displaystyle{\mathrm{i}^{-\mathrm{i}}}=e^{+\pi/2}}}
\iunit^{-\iunit} = e^{+\pi/2}

(I)^(- I) = exp(+ Pi/2)
(I)^(- I) == Exp[+ Pi/2]
Successful Successful - Successful [Tested: 1]
4.4.E13 lim x x - a ln x = 0 subscript 𝑥 superscript 𝑥 𝑎 𝑥 0 {\displaystyle{\displaystyle\lim_{x\to\infty}x^{-a}\ln x=0}}
\lim_{x\to\infty}x^{-a}\ln@@{x} = 0
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
limit((x)^(- a)* ln(x), x = infinity) = 0
Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0
Successful Successful - Successful [Tested: 3]
4.4.E14 lim x 0 x a ln x = 0 subscript 𝑥 0 superscript 𝑥 𝑎 𝑥 0 {\displaystyle{\displaystyle\lim_{x\to 0}x^{a}\ln x=0}}
\lim_{x\to 0}x^{a}\ln@@{x} = 0
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
limit((x)^(a)* ln(x), x = 0) = 0
Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.4.E15 lim x x a e - x = 0 subscript 𝑥 superscript 𝑥 𝑎 superscript 𝑒 𝑥 0 {\displaystyle{\displaystyle\lim_{x\to\infty}x^{a}e^{-x}=0}}
\lim_{x\to\infty}x^{a}e^{-x} = 0

limit((x)^(a)* exp(- x), x = infinity) = 0
Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.4.E16 lim z z a e - z = 0 subscript 𝑧 superscript 𝑧 𝑎 superscript 𝑒 𝑧 0 {\displaystyle{\displaystyle\lim_{z\to\infty}z^{a}e^{-z}=0}}
\lim_{z\to\infty}z^{a}e^{-z} = 0
| ph z | 1 2 π - δ , 1 2 π - δ < 1 2 π formulae-sequence phase 𝑧 1 2 𝜋 𝛿 1 2 𝜋 𝛿 1 2 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi-\delta,% \tfrac{1}{2}\pi-\delta<\tfrac{1}{2}\pi}}
limit((z)^(a)* exp(- z), z = infinity) = 0
Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.4.E17 lim n ( 1 + z n ) n = e z subscript 𝑛 superscript 1 𝑧 𝑛 𝑛 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n}=e^% {z}}}
\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}
z = 𝑧 absent {\displaystyle{\displaystyle z=}}
limit((1 +(z)/(n))^(n), n = infinity) = exp(z)
Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z]
Skipped - no semantic math Skipped - no semantic math - -
4.4.E18 lim n ( 1 + 1 n ) n = e subscript 𝑛 superscript 1 1 𝑛 𝑛 𝑒 {\displaystyle{\displaystyle\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n}=e}}
\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e

limit((1 +(1)/(n))^(n), n = infinity) = exp(1)
Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E
Skipped - no semantic math Skipped - no semantic math - -
4.4.E19 lim n ( ( k = 1 n 1 k ) - ln n ) = γ subscript 𝑛 subscript superscript 𝑛 𝑘 1 1 𝑘 𝑛 {\displaystyle{\displaystyle\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1% }{k}\right)-\ln n\right)=\gamma}}
\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant

limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma
Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma
Successful Successful - Successful [Tested: 1]
4.4.E19 γ = 0.57721 56649 01532 86060 0.57721 56649 01532 86060 {\displaystyle{\displaystyle\gamma=0.57721\ 56649\ 01532\ 86060\dots}}
\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots

gamma = 0.57721566490153286060
EulerGamma == 0.57721566490153286060
Successful Successful - Successful [Tested: 1]
4.5.E1 x 1 + x < ln ( 1 + x ) 𝑥 1 𝑥 1 𝑥 {\displaystyle{\displaystyle\frac{x}{1+x}<\ln\left(1+x\right)}}
\frac{x}{1+x} < \ln@{1+x}
x > - 1 , x 0 formulae-sequence 𝑥 1 𝑥 0 {\displaystyle{\displaystyle x>-1,x\neq 0}}
(x)/(1 + x) < ln(1 + x)
Divide[x,1 + x] < Log[1 + x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.5.E1 ln ( 1 + x ) < x 1 𝑥 𝑥 {\displaystyle{\displaystyle\ln\left(1+x\right)<x}}
\ln@{1+x} < x
x > - 1 , x 0 formulae-sequence 𝑥 1 𝑥 0 {\displaystyle{\displaystyle x>-1,x\neq 0}}
ln(1 + x) < x
Log[1 + x] < x
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.5.E2 x < - ln ( 1 - x ) 𝑥 1 𝑥 {\displaystyle{\displaystyle x<-\ln\left(1-x\right)}}
x < -\ln@{1-x}
x < 1 , x 0 formulae-sequence 𝑥 1 𝑥 0 {\displaystyle{\displaystyle x<1,x\neq 0}}
x < - ln(1 - x)
x < - Log[1 - x]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E2 - ln ( 1 - x ) < x 1 - x 1 𝑥 𝑥 1 𝑥 {\displaystyle{\displaystyle-\ln\left(1-x\right)<\frac{x}{1-x}}}
-\ln@{1-x} < \frac{x}{1-x}
x < 1 , x 0 formulae-sequence 𝑥 1 𝑥 0 {\displaystyle{\displaystyle x<1,x\neq 0}}
- ln(1 - x) < (x)/(1 - x)
- Log[1 - x] < Divide[x,1 - x]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E3 | ln ( 1 - x ) | < 3 2 x 1 𝑥 3 2 𝑥 {\displaystyle{\displaystyle|\ln\left(1-x\right)|<\tfrac{3}{2}x}}
|\ln@{1-x}| < \tfrac{3}{2}x
0 < x , x 0.5828 formulae-sequence 0 𝑥 𝑥 0.5828 {\displaystyle{\displaystyle 0<x,x\leq 0.5828\dots}}
abs(ln(1 - x)) < (3)/(2)*x
Abs[Log[1 - x]] < Divide[3,2]*x
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E4 ln x x - 1 𝑥 𝑥 1 {\displaystyle{\displaystyle\ln x\leq x-1}}
\ln@@{x} \leq x-1
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
ln(x) <= x - 1
Log[x] <= x - 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.5.E5 ln x a ( x 1 / a - 1 ) 𝑥 𝑎 superscript 𝑥 1 𝑎 1 {\displaystyle{\displaystyle\ln x\leq a(x^{1/a}-1)}}
\ln@@{x} \leq a(x^{1/a}-1)
a > 0 , x > 0 formulae-sequence 𝑎 0 𝑥 0 {\displaystyle{\displaystyle a>0,x>0}}
ln(x) <= a*((x)^(1/a)- 1)
Log[x] <= a*((x)^(1/a)- 1)
Error Failure - Successful [Tested: 9]
4.5.E6 | ln ( 1 + z ) | - ln ( 1 - | z | ) 1 𝑧 1 𝑧 {\displaystyle{\displaystyle|\ln\left(1+z\right)|\leq-\ln\left(1-|z|\right)}}
|\ln@{1+z}| \leq -\ln@{1-|z|}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
abs(ln(1 + z)) <= - ln(1 -abs(z))
Abs[Log[1 + z]] <= - Log[1 -Abs[z]]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E7 e - x / ( 1 - x ) < 1 - x superscript 𝑒 𝑥 1 𝑥 1 𝑥 {\displaystyle{\displaystyle e^{-x/(1-x)}<1-x}}
e^{-x/(1-x)} < 1-x
x < 1 𝑥 1 {\displaystyle{\displaystyle x<1}}
exp(- x/(1 - x)) < 1 - x
Exp[- x/(1 - x)] < 1 - x
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E7 1 - x < e - x 1 𝑥 superscript 𝑒 𝑥 {\displaystyle{\displaystyle 1-x<e^{-x}}}
1-x < e^{-x}
x < 1 𝑥 1 {\displaystyle{\displaystyle x<1}}
1 - x < exp(- x)
1 - x < Exp[- x]
Error Failure - Successful [Tested: 1]
4.5.E8 1 + x < e x 1 𝑥 superscript 𝑒 𝑥 {\displaystyle{\displaystyle 1+x<e^{x}}}
1+x < e^{x}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
1 + x < exp(x)
1 + x < Exp[x]
Skipped - no semantic math Failure - Successful [Tested: 3]
4.5.E9 e x < 1 1 - x superscript 𝑒 𝑥 1 1 𝑥 {\displaystyle{\displaystyle e^{x}<\frac{1}{1-x}}}
e^{x} < \frac{1}{1-x}
x < 1 𝑥 1 {\displaystyle{\displaystyle x<1}}
exp(x) < (1)/(1 - x)
Exp[x] < Divide[1,1 - x]
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E10 x 1 + x < 1 - e - x 𝑥 1 𝑥 1 superscript 𝑒 𝑥 {\displaystyle{\displaystyle\frac{x}{1+x}<1-e^{-x}}}
\frac{x}{1+x} < 1-e^{-x}
x > - 1 𝑥 1 {\displaystyle{\displaystyle x>-1}}
(x)/(1 + x) < 1 - exp(- x)
Divide[x,1 + x] < 1 - Exp[- x]
Skipped - no semantic math Failure - Successful [Tested: 3]
4.5.E10 1 - e - x < x 1 superscript 𝑒 𝑥 𝑥 {\displaystyle{\displaystyle 1-e^{-x}<x}}
1-e^{-x} < x
x > - 1 𝑥 1 {\displaystyle{\displaystyle x>-1}}
1 - exp(- x) < x
1 - Exp[- x] < x
Error Failure - Successful [Tested: 3]
4.5.E11 x < e x - 1 𝑥 superscript 𝑒 𝑥 1 {\displaystyle{\displaystyle x<e^{x}-1}}
x < e^{x}-1
x < 1 𝑥 1 {\displaystyle{\displaystyle x<1}}
x < exp(x)- 1
x < Exp[x]- 1
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E11 e x - 1 < x 1 - x superscript 𝑒 𝑥 1 𝑥 1 𝑥 {\displaystyle{\displaystyle e^{x}-1<\frac{x}{1-x}}}
e^{x}-1 < \frac{x}{1-x}
x < 1 𝑥 1 {\displaystyle{\displaystyle x<1}}
exp(x)- 1 < (x)/(1 - x)
Exp[x]- 1 < Divide[x,1 - x]
Error Failure - Successful [Tested: 1]
4.5.E12 e x / ( 1 + x ) < 1 + x superscript 𝑒 𝑥 1 𝑥 1 𝑥 {\displaystyle{\displaystyle e^{x/(1+x)}<1+x}}
e^{x/(1+x)} < 1+x
x > - 1 𝑥 1 {\displaystyle{\displaystyle x>-1}}
exp(x/(1 + x)) < 1 + x
Exp[x/(1 + x)] < 1 + x
Skipped - no semantic math Failure - Successful [Tested: 3]
4.5.E13 e x y / ( x + y ) < ( 1 + x y ) y superscript 𝑒 𝑥 𝑦 𝑥 𝑦 superscript 1 𝑥 𝑦 𝑦 {\displaystyle{\displaystyle e^{xy/(x+y)}<\left(1+\frac{x}{y}\right)^{y}}}
e^{xy/(x+y)} < \left(1+\frac{x}{y}\right)^{y}
x > 0 , y > 0 formulae-sequence 𝑥 0 𝑦 0 {\displaystyle{\displaystyle x>0,y>0}}
exp(x*y/(x + y)) < (1 +(x)/(y))^(y)
Exp[x*y/(x + y)] < (1 +Divide[x,y])^(y)
Skipped - no semantic math Failure - Successful [Tested: 9]
4.5.E13 ( 1 + x y ) y < e x superscript 1 𝑥 𝑦 𝑦 superscript 𝑒 𝑥 {\displaystyle{\displaystyle\left(1+\frac{x}{y}\right)^{y}<e^{x}}}
\left(1+\frac{x}{y}\right)^{y} < e^{x}
x > 0 , y > 0 formulae-sequence 𝑥 0 𝑦 0 {\displaystyle{\displaystyle x>0,y>0}}
(1 +(x)/(y))^(y) < exp(x)
(1 +Divide[x,y])^(y) < Exp[x]
Error Failure - Successful [Tested: 9]
4.5.E14 e - x < 1 - 1 2 x superscript 𝑒 𝑥 1 1 2 𝑥 {\displaystyle{\displaystyle e^{-x}<1-\tfrac{1}{2}x}}
e^{-x} < 1-\tfrac{1}{2}x
0 < x , x 1.5936 formulae-sequence 0 𝑥 𝑥 1.5936 {\displaystyle{\displaystyle 0<x,x\leq 1.5936\dots}}
exp(- x) < 1 -(1)/(2)*x
Exp[- x] < 1 -Divide[1,2]*x
Skipped - no semantic math Failure - Successful [Tested: 2]
4.5.E15 1 4 | z | < | e z - 1 | 1 4 𝑧 superscript 𝑒 𝑧 1 {\displaystyle{\displaystyle\tfrac{1}{4}|z|<|e^{z}-1|}}
\tfrac{1}{4}|z| < |e^{z}-1|
0 < | z | , | z | < 1 formulae-sequence 0 𝑧 𝑧 1 {\displaystyle{\displaystyle 0<|z|,|z|<1}}
(1)/(4)*abs(z) < abs(exp(z)- 1)
Divide[1,4]*Abs[z] < Abs[Exp[z]- 1]
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E15 | e z - 1 | < 7 4 | z | superscript 𝑒 𝑧 1 7 4 𝑧 {\displaystyle{\displaystyle|e^{z}-1|<\tfrac{7}{4}|z|}}
|e^{z}-1| < \tfrac{7}{4}|z|
0 < | z | , | z | < 1 formulae-sequence 0 𝑧 𝑧 1 {\displaystyle{\displaystyle 0<|z|,|z|<1}}
abs(exp(z)- 1) < (7)/(4)*abs(z)
Abs[Exp[z]- 1] < Divide[7,4]*Abs[z]
Error Failure - Successful [Tested: 1]
4.5.E16 | e z - 1 | e | z | - 1 superscript 𝑒 𝑧 1 superscript 𝑒 𝑧 1 {\displaystyle{\displaystyle|e^{z}-1|\leq e^{|z|}-1}}
|e^{z}-1| \leq e^{|z|}-1

abs(exp(z)- 1) <= exp(abs(z))- 1
Abs[Exp[z]- 1] <= Exp[Abs[z]]- 1
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E16 e | z | - 1 | z | e | z | superscript 𝑒 𝑧 1 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle e^{|z|}-1\leq|z|e^{|z|}}}
e^{|z|}-1 \leq |z|e^{|z|}

exp(abs(z))- 1 <= abs(z)*exp(abs(z))
Exp[Abs[z]]- 1 <= Abs[z]*Exp[Abs[z]]
Error Failure - Successful [Tested: 1]
4.7.E1 d d z ln z = 1 z derivative 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\ln z=\frac{1}{z}}}
\deriv{}{z}\ln@@{z} = \frac{1}{z}

diff(ln(z), z) = (1)/(z)
D[Log[z], z] == Divide[1,z]
Successful Successful - Successful [Tested: 7]
4.7.E2 d d z Ln z = 1 z derivative 𝑧 multivalued-natural-logarithm 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{Ln}z=% \frac{1}{z}}}
\deriv{}{z}\Ln@@{z} = \frac{1}{z}

diff(ln(z), z) = (1)/(z)
D[Log[z], z] == Divide[1,z]
Successful Successful - Successful [Tested: 7]
4.7.E3 d n d z n ln z = ( - 1 ) n - 1 ( n - 1 ) ! z - n derivative 𝑧 𝑛 𝑧 superscript 1 𝑛 1 𝑛 1 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\ln z=(-% 1)^{n-1}(n-1)!z^{-n}}}
\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}

diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
4.7.E4 d n d z n Ln z = ( - 1 ) n - 1 ( n - 1 ) ! z - n derivative 𝑧 𝑛 multivalued-natural-logarithm 𝑧 superscript 1 𝑛 1 𝑛 1 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}% \operatorname{Ln}z=(-1)^{n-1}(n-1)!z^{-n}}}
\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}

diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
4.7.E7 d d z e z = e z derivative 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{z}=e^{z}}}
\deriv{}{z}e^{z} = e^{z}

diff(exp(z), z) = exp(z)
D[Exp[z], z] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.7.E8 d d z e a z = a e a z derivative 𝑧 superscript 𝑒 𝑎 𝑧 𝑎 superscript 𝑒 𝑎 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{az}=ae^{az}}}
\deriv{}{z}e^{az} = ae^{az}

diff(exp(a*z), z) = a*exp(a*z)
D[Exp[a*z], z] == a*Exp[a*z]
Successful Successful - Successful [Tested: 42]
4.7.E9 d d z a z = a z ln a derivative 𝑧 superscript 𝑎 𝑧 superscript 𝑎 𝑧 𝑎 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}a^{z}=a^{z}\ln a}}
\deriv{}{z}a^{z} = a^{z}\ln@@{a}
a 0 𝑎 0 {\displaystyle{\displaystyle a\neq 0}}
diff((a)^(z), z) = (a)^(z)* ln(a)
D[(a)^(z), z] == (a)^(z)* Log[a]
Successful Successful - Successful [Tested: 42]
4.7.E10 d d z z a = a z a - 1 derivative 𝑧 superscript 𝑧 𝑎 𝑎 superscript 𝑧 𝑎 1 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}z^{a}=az^{a-1}}}
\deriv{}{z}z^{a} = az^{a-1}

diff((z)^(a), z) = a*(z)^(a - 1)
D[(z)^(a), z] == a*(z)^(a - 1)
Successful Successful - Successful [Tested: 42]
4.7.E14 d 2 w d z 2 = a w derivative 𝑤 𝑧 2 𝑎 𝑤 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}=aw}}
\deriv[2]{w}{z} = aw
a 0 𝑎 0 {\displaystyle{\displaystyle a\neq 0}}
diff(w, [z$(2)]) = a*w
D[w, {z, 2}] == a*w
Failure Failure
Failed [300 / 300]
Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.7.E15 w = A e a z + B e - a z 𝑤 𝐴 superscript 𝑒 𝑎 𝑧 𝐵 superscript 𝑒 𝑎 𝑧 {\displaystyle{\displaystyle w=Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}}}
w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}

w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z)
w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z]
Skipped - no semantic math Skipped - no semantic math - -
4.8.E1 Ln ( z 1 z 2 ) = Ln z 1 + Ln z 2 multivalued-natural-logarithm subscript 𝑧 1 subscript 𝑧 2 multivalued-natural-logarithm subscript 𝑧 1 multivalued-natural-logarithm subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{Ln}\left(z_{1}z_{2}\right)=% \operatorname{Ln}z_{1}+\operatorname{Ln}z_{2}}}
\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}

ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}

Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}

Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}

Result: .133199999e-10-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}

Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}

... skip entries to safe data
4.8.E2 ln ( z 1 z 2 ) = ln z 1 + ln z 2 subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\ln\left(z_{1}z_{2}\right)=\ln z_{1}+\ln z_{2}}}
\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}
- π ph z 1 + ph z 2 , ph z 1 + ph z 2 π formulae-sequence 𝜋 phase subscript 𝑧 1 phase subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 𝜋 {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}z_{1}+\operatorname{ph}z_% {2},\operatorname{ph}z_{1}+\operatorname{ph}z_{2}\leq\pi}}
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
Failure Failure Successful [Tested: 59] Successful [Tested: 75]
4.8.E3 Ln z 1 z 2 = Ln z 1 - Ln z 2 multivalued-natural-logarithm subscript 𝑧 1 subscript 𝑧 2 multivalued-natural-logarithm subscript 𝑧 1 multivalued-natural-logarithm subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{Ln}\frac{z_{1}}{z_{2}}=\operatorname% {Ln}z_{1}-\operatorname{Ln}z_{2}}}
\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}

ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}

Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}

Result: -.1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}

... skip entries to safe data
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E4 ln z 1 z 2 = ln z 1 - ln z 2 subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\ln\frac{z_{1}}{z_{2}}=\ln z_{1}-\ln z_{2}}}
\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}
- π ph z 1 - ph z 2 , ph z 1 - ph z 2 π formulae-sequence 𝜋 phase subscript 𝑧 1 phase subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 𝜋 {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}z_{1}-\operatorname{ph}z_% {2},\operatorname{ph}z_{1}-\operatorname{ph}z_{2}\leq\pi}}
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
Failure Failure
Failed [3 / 70]
Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}

Result: 6.283185308*I
Test Values: {z[1] = 2, z[2] = -2}

Failed [11 / 86]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.8.E5 Ln ( z n ) = n Ln z multivalued-natural-logarithm superscript 𝑧 𝑛 𝑛 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\operatorname{Ln}\left(z^{n}\right)=n\operatorname% {Ln}z}}
\Ln@{z^{n}} = n\Ln@@{z}

ln((z)^(n)) = n*ln(z)
Log[(z)^(n)] == n*Log[z]
Failure Failure
Failed [5 / 21]
Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}

Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}

Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}

Result: .133199999e-10+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3}

... skip entries to safe data
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.8.E6 ln ( z n ) = n ln z superscript 𝑧 𝑛 𝑛 𝑧 {\displaystyle{\displaystyle\ln\left(z^{n}\right)=n\ln z}}
\ln@{z^{n}} = n\ln@@{z}
- π n ph z , n ph z π formulae-sequence 𝜋 𝑛 phase 𝑧 𝑛 phase 𝑧 𝜋 {\displaystyle{\displaystyle-\pi\leq n\operatorname{ph}z,n\operatorname{ph}z% \leq\pi}}
ln((z)^(n)) = n*ln(z)
Log[(z)^(n)] == n*Log[z]
Failure Failure
Failed [1 / 17]
Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}

Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.8.E7 ln 1 z = - ln z 1 𝑧 𝑧 {\displaystyle{\displaystyle\ln\frac{1}{z}=-\ln z}}
\ln@@{\frac{1}{z}} = -\ln@@{z}
| ph z | π phase 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\pi}}
ln((1)/(z)) = - ln(z)
Log[Divide[1,z]] == - Log[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.8.E8 Ln ( exp z ) = z + 2 k π i multivalued-natural-logarithm 𝑧 𝑧 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}\left(\exp z\right)=z+2k\pi% \mathrm{i}}}
\Ln@{\exp@@{z}} = z+2k\pi\iunit

ln(exp(z)) = z + 2*k*Pi*I
Log[Exp[z]] == z + 2*k*Pi*I
Failure Failure
Failed [21 / 21]
Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E9 ln ( exp z ) = z 𝑧 𝑧 {\displaystyle{\displaystyle\ln\left(\exp z\right)=z}}
\ln@{\exp@@{z}} = z
- π z , z π formulae-sequence 𝜋 𝑧 𝑧 𝜋 {\displaystyle{\displaystyle-\pi\leq\Im z,\Im z\leq\pi}}
ln(exp(z)) = z
Log[Exp[z]] == z
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.8.E10 exp ( ln z ) = exp ( Ln z ) 𝑧 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\exp\left(\ln z\right)=\exp\left(\operatorname{Ln}% z\right)}}
\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}

exp(ln(z)) = exp(ln(z))
Exp[Log[z]] == Exp[Log[z]]
Successful Successful - Successful [Tested: 7]
4.8.E10 exp ( Ln z ) = z multivalued-natural-logarithm 𝑧 𝑧 {\displaystyle{\displaystyle\exp\left(\operatorname{Ln}z\right)=z}}
\exp@{\Ln@@{z}} = z

exp(ln(z)) = z
Exp[Log[z]] == z
Successful Successful - Successful [Tested: 7]
4.8.E11 Ln ( a z ) = z Ln a + 2 k π i multivalued-natural-logarithm superscript 𝑎 𝑧 𝑧 multivalued-natural-logarithm 𝑎 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}\left(a^{z}\right)=z\operatorname% {Ln}a+2k\pi\mathrm{i}}}
\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit

ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
Failure Failure
Failed [126 / 126]
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E12 ln ( a z ) = z ln a + 2 k π i superscript 𝑎 𝑧 𝑧 𝑎 2 𝑘 𝜋 imaginary-unit {\displaystyle{\displaystyle\ln\left(a^{z}\right)=z\ln a+2k\pi\mathrm{i}}}
\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit

ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
Failure Failure
Failed [126 / 126]
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}

Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3}

Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1}

... skip entries to safe data
Failed [126 / 126]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.8.E13 ln ( a x ) = x ln a superscript 𝑎 𝑥 𝑥 𝑎 {\displaystyle{\displaystyle\ln\left(a^{x}\right)=x\ln a}}
\ln@{a^{x}} = x\ln@@{a}
a > 0 𝑎 0 {\displaystyle{\displaystyle a>0}}
ln((a)^(x)) = x*ln(a)
Log[(a)^(x)] == x*Log[a]
Successful Failure - Successful [Tested: 9]
4.8.E14 a z 1 a z 2 = a z 1 + z 2 superscript 𝑎 subscript 𝑧 1 superscript 𝑎 subscript 𝑧 2 superscript 𝑎 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle a^{z_{1}}a^{z_{2}}=a^{z_{1}+z_{2}}}}
a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}
a 0 𝑎 0 {\displaystyle{\displaystyle a\neq 0}}
(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])
(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])
Skipped - no semantic math Skipped - no semantic math - -
4.8.E15 a z b z = ( a b ) z superscript 𝑎 𝑧 superscript 𝑏 𝑧 superscript 𝑎 𝑏 𝑧 {\displaystyle{\displaystyle a^{z}b^{z}=(ab)^{z}}}
a^{z}b^{z} = (ab)^{z}
- π ph a + ph b , ph a + ph b π formulae-sequence 𝜋 phase 𝑎 phase 𝑏 phase 𝑎 phase 𝑏 𝜋 {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}a+\operatorname{ph}b,% \operatorname{ph}a+\operatorname{ph}b\leq\pi}}
(a)^(z)* (b)^(z) = (a*b)^(z)
(a)^(z)* (b)^(z) == (a*b)^(z)
Skipped - no semantic math Skipped - no semantic math - -
4.8.E16 e z 1 e z 2 = e z 1 + z 2 superscript 𝑒 subscript 𝑧 1 superscript 𝑒 subscript 𝑧 2 superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle e^{z_{1}}e^{z_{2}}=e^{z_{1}+z_{2}}}}
e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}

exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])
Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]
Skipped - no semantic math Skipped - no semantic math - -
4.8.E17 ( e z 1 ) z 2 = e z 1 z 2 superscript superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle(e^{z_{1}})^{z_{2}}=e^{z_{1}z_{2}}}}
(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}
- π z 1 , z 1 π formulae-sequence 𝜋 subscript 𝑧 1 subscript 𝑧 1 𝜋 {\displaystyle{\displaystyle-\pi\leq\Im z_{1},\Im z_{1}\leq\pi}}
(exp(z[1]))^(z[2]) = exp(z[1]*z[2])
(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]
Skipped - no semantic math Skipped - no semantic math - -
4.10.E1 d z z = ln z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{z}=\ln z}}
\int\frac{\diff{z}}{z} = \ln@@{z}

int((1)/(z), z) = ln(z)
Integrate[Divide[1,z], z, GenerateConditions->None] == Log[z]
Successful Successful - Successful [Tested: 7]
4.10.E2 ln z d z = z ln z - z 𝑧 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\int\ln z\mathrm{d}z=z\ln z-z}}
\int\ln@@{z}\diff{z} = z\ln@@{z}-z

int(ln(z), z) = z*ln(z)- z
Integrate[Log[z], z, GenerateConditions->None] == z*Log[z]- z
Successful Successful - Successful [Tested: 7]
4.10.E3 z n ln z d z = z n + 1 n + 1 ln z - z n + 1 ( n + 1 ) 2 superscript 𝑧 𝑛 𝑧 𝑧 superscript 𝑧 𝑛 1 𝑛 1 𝑧 superscript 𝑧 𝑛 1 superscript 𝑛 1 2 {\displaystyle{\displaystyle\int z^{n}\ln z\mathrm{d}z=\frac{z^{n+1}}{n+1}\ln z% -\frac{z^{n+1}}{(n+1)^{2}}}}
\int z^{n}\ln@@{z}\diff{z} = \frac{z^{n+1}}{n+1}\ln@@{z}-\frac{z^{n+1}}{(n+1)^{2}}
n - 1 𝑛 1 {\displaystyle{\displaystyle n\neq-1}}
int((z)^(n)* ln(z), z) = ((z)^(n + 1))/(n + 1)*ln(z)-((z)^(n + 1))/((n + 1)^(2))
Integrate[(z)^(n)* Log[z], z, GenerateConditions->None] == Divide[(z)^(n + 1),n + 1]*Log[z]-Divide[(z)^(n + 1),(n + 1)^(2)]
Successful Successful - Successful [Tested: 21]
4.10.E4 d z z ln z = ln ( ln z ) 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{z\ln z}=\ln\left(\ln z% \right)}}
\int\frac{\diff{z}}{z\ln@@{z}} = \ln@{\ln@@{z}}

int((1)/(z*ln(z)), z) = ln(ln(z))
Integrate[Divide[1,z*Log[z]], z, GenerateConditions->None] == Log[Log[z]]
Successful Successful - Successful [Tested: 7]
4.10.E5 0 1 ln t 1 - t d t = - π 2 6 superscript subscript 0 1 𝑡 1 𝑡 𝑡 superscript 𝜋 2 6 {\displaystyle{\displaystyle\int_{0}^{1}\frac{\ln t}{1-t}\mathrm{d}t=-\frac{% \pi^{2}}{6}}}
\int_{0}^{1}\frac{\ln@@{t}}{1-t}\diff{t} = -\frac{\pi^{2}}{6}

int((ln(t))/(1 - t), t = 0..1) = -((Pi)^(2))/(6)
Integrate[Divide[Log[t],1 - t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),6]
Successful Successful - Successful [Tested: 1]
4.10.E6 0 1 ln t 1 + t d t = - π 2 12 superscript subscript 0 1 𝑡 1 𝑡 𝑡 superscript 𝜋 2 12 {\displaystyle{\displaystyle\int_{0}^{1}\frac{\ln t}{1+t}\mathrm{d}t=-\frac{% \pi^{2}}{12}}}
\int_{0}^{1}\frac{\ln@@{t}}{1+t}\diff{t} = -\frac{\pi^{2}}{12}

int((ln(t))/(1 + t), t = 0..1) = -((Pi)^(2))/(12)
Integrate[Divide[Log[t],1 + t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),12]
Successful Successful - Successful [Tested: 1]
4.10.E8 e a z d z = e a z a superscript 𝑒 𝑎 𝑧 𝑧 superscript 𝑒 𝑎 𝑧 𝑎 {\displaystyle{\displaystyle\int e^{az}\mathrm{d}z=\frac{e^{az}}{a}}}
\int e^{az}\diff{z} = \frac{e^{az}}{a}

int(exp(a*z), z) = (exp(a*z))/(a)
Integrate[Exp[a*z], z, GenerateConditions->None] == Divide[Exp[a*z],a]
Successful Successful - Successful [Tested: 42]
4.10.E9 d z e a z + b = 1 a b ( a z - ln ( e a z + b ) ) 𝑧 superscript 𝑒 𝑎 𝑧 𝑏 1 𝑎 𝑏 𝑎 𝑧 superscript 𝑒 𝑎 𝑧 𝑏 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{e^{az}+b}=\frac{1}{ab}(az-% \ln\left(e^{az}+b\right))}}
\int\frac{\diff{z}}{e^{az}+b} = \frac{1}{ab}(az-\ln@{e^{az}+b})

int((1)/(exp(a*z)+ b), z) = (1)/(a*b)*(a*z - ln(exp(a*z)+ b))
Integrate[Divide[1,Exp[a*z]+ b], z, GenerateConditions->None] == Divide[1,a*b]*(a*z - Log[Exp[a*z]+ b])
Failure Successful Successful [Tested: 252] Successful [Tested: 252]
4.10.E10 e a z - 1 e a z + 1 d z = 2 a ln ( e a z / 2 + e - a z / 2 ) superscript 𝑒 𝑎 𝑧 1 superscript 𝑒 𝑎 𝑧 1 𝑧 2 𝑎 superscript 𝑒 𝑎 𝑧 2 superscript 𝑒 𝑎 𝑧 2 {\displaystyle{\displaystyle\int\frac{e^{az}-1}{e^{az}+1}\mathrm{d}z=\frac{2}{% a}\ln\left(e^{az/2}+e^{-az/2}\right)}}
\int\frac{e^{az}-1}{e^{az}+1}\diff{z} = \frac{2}{a}\ln@{e^{az/2}+e^{-az/2}}

int((exp(a*z)- 1)/(exp(a*z)+ 1), z) = (2)/(a)*ln(exp(a*z/2)+ exp(- a*z/2))
Integrate[Divide[Exp[a*z]- 1,Exp[a*z]+ 1], z, GenerateConditions->None] == Divide[2,a]*Log[Exp[a*z/2]+ Exp[- a*z/2]]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
4.10.E11 - e - c x 2 d x = π c superscript subscript superscript 𝑒 𝑐 superscript 𝑥 2 𝑥 𝜋 𝑐 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}e^{-cx^{2}}\mathrm{d}x=% \sqrt{\frac{\pi}{c}}}}
\int_{-\infty}^{\infty}e^{-cx^{2}}\diff{x} = \sqrt{\frac{\pi}{c}}
c > 0 𝑐 0 {\displaystyle{\displaystyle\Re c>0}}
int(exp(- c*(x)^(2)), x = - infinity..infinity) = sqrt((Pi)/(c))
Integrate[Exp[- c*(x)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,c]]
Successful Successful - Successful [Tested: 3]
4.10.E12 0 ln 2 x e x e x - 1 d x = π 2 12 superscript subscript 0 2 𝑥 superscript 𝑒 𝑥 superscript 𝑒 𝑥 1 𝑥 superscript 𝜋 2 12 {\displaystyle{\displaystyle\int_{0}^{\ln 2}\frac{xe^{x}}{e^{x}-1}\mathrm{d}x=% \frac{\pi^{2}}{12}}}
\int_{0}^{\ln@@{2}}\frac{xe^{x}}{e^{x}-1}\diff{x} = \frac{\pi^{2}}{12}

int((x*exp(x))/(exp(x)- 1), x = 0..ln(2)) = ((Pi)^(2))/(12)
Integrate[Divide[x*Exp[x],Exp[x]- 1], {x, 0, Log[2]}, GenerateConditions->None] == Divide[(Pi)^(2),12]
Successful Successful - Successful [Tested: 1]
4.10.E13 0 d x e x + 1 = ln 2 superscript subscript 0 𝑥 superscript 𝑒 𝑥 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\mathrm{d}x}{e^{x}+1}=\ln 2}}
\int_{0}^{\infty}\frac{\diff{x}}{e^{x}+1} = \ln@@{2}

int((1)/(exp(x)+ 1), x = 0..infinity) = ln(2)
Integrate[Divide[1,Exp[x]+ 1], {x, 0, Infinity}, GenerateConditions->None] == Log[2]
Successful Successful - Successful [Tested: 1]
4.12.E1 ϕ ( x + 1 ) = e ϕ ( x ) italic-ϕ 𝑥 1 superscript 𝑒 italic-ϕ 𝑥 {\displaystyle{\displaystyle\phi(x+1)=e^{\phi(x)}}}
\phi(x+1) = e^{\phi(x)}
- 1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle-1<x,x<\infty}}
phi(x + 1) = exp(phi(x))
\[Phi][x + 1] == Exp[\[Phi][x]]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E2 ϕ ( 0 ) = 0 italic-ϕ 0 0 {\displaystyle{\displaystyle\phi(0)=0}}
\phi(0) = 0

phi(0) = 0
\[Phi][0] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.12.E3 ψ ( e x ) = 1 + ψ ( x ) 𝜓 superscript 𝑒 𝑥 1 𝜓 𝑥 {\displaystyle{\displaystyle\psi(e^{x})=1+\psi(x)}}
\psi(e^{x}) = 1+\psi(x)
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
psi(exp(x)) = 1 + psi(x)
\[Psi][Exp[x]] == 1 + \[Psi][x]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E4 ψ ( 0 ) = 0 𝜓 0 0 {\displaystyle{\displaystyle\psi(0)=0}}
\psi(0) = 0

psi(0) = 0
\[Psi][0] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.12.E5 ϕ ( x ) = ψ ( x ) italic-ϕ 𝑥 𝜓 𝑥 {\displaystyle{\displaystyle\phi(x)=\psi(x)}}
\phi(x) = \psi(x)
0 x , x 1 formulae-sequence 0 𝑥 𝑥 1 {\displaystyle{\displaystyle 0\leq x,x\leq 1}}
phi(x) = psi(x)
\[Phi][x] == \[Psi][x]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E6 ϕ ( x ) = ln ( x + 1 ) italic-ϕ 𝑥 𝑥 1 {\displaystyle{\displaystyle\phi(x)=\ln\left(x+1\right)}}
\phi(x) = \ln@{x+1}
- 1 < x , x < 0 formulae-sequence 1 𝑥 𝑥 0 {\displaystyle{\displaystyle-1<x,x<0}}
phi(x) = ln(x + 1)
\[Phi][x] == Log[x + 1]
Failure Failure Error Skip - No test values generated
4.12.E8 ψ ( x ) = e x - 1 𝜓 𝑥 superscript 𝑒 𝑥 1 {\displaystyle{\displaystyle\psi(x)=e^{x}-1}}
\psi(x) = e^{x}-1
- < x , x < 0 formulae-sequence 𝑥 𝑥 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
psi(x) = exp(x)- 1
\[Psi][x] == Exp[x]- 1
Skipped - no semantic math Skipped - no semantic math - -
4.13.E1 W e W = x 𝑊 superscript 𝑒 𝑊 𝑥 {\displaystyle{\displaystyle We^{W}=x}}
We^{W} = x

W*exp(W) = x
W*Exp[W] == x
Failure Failure
Failed [30 / 30]
Result: -.263026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .736973970+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -.763026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.096603674+.1092863076*I
Test Values: {W = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.2630260306572938, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.7369739693427062, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex1 Wp ( - 1 / e ) = Wm ( - 1 / e ) Lambert-Wp 1 𝑒 Lambert-Wm 1 𝑒 {\displaystyle{\displaystyle\mathrm{Wp}\left(-1/e\right)=\mathrm{Wm}\left(-1/e% \right)}}
\LambertWp@{-1/e} = \LambertWm@{-1/e}

LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1))
ProductLog[0, - 1/E] == ProductLog[-1, - 1/E]
Successful Successful - Successful [Tested: 1]
4.13#Ex1 Wm ( - 1 / e ) = - 1 Lambert-Wm 1 𝑒 1 {\displaystyle{\displaystyle\mathrm{Wm}\left(-1/e\right)=-1}}
\LambertWm@{-1/e} = -1

LambertW(-1, - 1/exp(1)) = - 1
ProductLog[-1, - 1/E] == - 1
Successful Successful - Successful [Tested: 1]
4.13#Ex2 Wp ( 0 ) = 0 Lambert-Wp 0 0 {\displaystyle{\displaystyle\mathrm{Wp}\left(0\right)=0}}
\LambertWp@{0} = 0

LambertW(0, 0) = 0
ProductLog[0, 0] == 0
Successful Successful - Successful [Tested: 1]
4.13#Ex3 Wp ( e ) = 1 Lambert-Wp 𝑒 1 {\displaystyle{\displaystyle\mathrm{Wp}\left(e\right)=1}}
\LambertWp@{e} = 1

LambertW(0, exp(1)) = 1
ProductLog[0, E] == 1
Successful Successful - Successful [Tested: 1]
4.13#Ex4 U + ln U = x 𝑈 𝑈 𝑥 {\displaystyle{\displaystyle U+\ln U=x}}
U+\ln@@{U} = x

U + ln(U) = x
U + Log[U] == x
Failure Failure
Failed [30 / 30]
Result: -.6339745958+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .3660254042+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -1.133974596+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.000000000+2.960420506*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.6339745962155613, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.3660254037844387, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex5 U = U ( x ) 𝑈 𝑈 𝑥 {\displaystyle{\displaystyle U=U(x)}}
U = U(x)

U = U*(x)
U == U*(x)
Failure Failure
Failed [30 / 30]
Result: -.4330127020-.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .4330127020+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -.8660254040-.5000000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: .2500000000-.4330127020*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.4330127018922193, -0.24999999999999994]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex5 U ( x ) = W ( e x ) 𝑈 𝑥 Lambert-W superscript 𝑒 𝑥 {\displaystyle{\displaystyle U(x)=W\left(e^{x}\right)}}
U(x) = \LambertW@{e^{x}}

U(x) = LambertW(exp(x))
U[x] == ProductLog[Exp[x]]
Failure Failure
Failed [30 / 30]
Result: .34078386e-1+.7500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: -.3332359062+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: .174905209+1.*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.014959720+1.299038106*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.0340783855511575, 0.7499999999999999]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[-0.333235906269531, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13.E5 Wp ( x ) = n = 1 ( - 1 ) n - 1 n n - 2 ( n - 1 ) ! x n Lambert-Wp 𝑥 superscript subscript 𝑛 1 superscript 1 𝑛 1 superscript 𝑛 𝑛 2 𝑛 1 superscript 𝑥 𝑛 {\displaystyle{\displaystyle\mathrm{Wp}\left(x\right)=\sum_{n=1}^{\infty}(-1)^% {n-1}\frac{n^{n-2}}{(n-1)!}x^{n}}}
\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}
| x | < 1 e 𝑥 1 𝑒 {\displaystyle{\displaystyle|x|<\dfrac{1}{e}}}
LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity)
ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]
Failure Successful Error Successful [Tested: 0]
4.13.E6 W ( - e - 1 - ( t 2 / 2 ) ) = n = 0 ( - 1 ) n - 1 c n t n Lambert-W superscript 𝑒 1 superscript 𝑡 2 2 superscript subscript 𝑛 0 superscript 1 𝑛 1 subscript 𝑐 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle W\left(-e^{-1-(t^{2}/2)}\right)=\sum_{n=0}^{% \infty}(-1)^{n-1}c_{n}t^{n}}}
\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}
| t | < 2 π 𝑡 2 𝜋 {\displaystyle{\displaystyle|t|<2\sqrt{\pi}}}
LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity)
ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [60 / 60]
Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2-1/2*I*3^(1/2)}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [60 / 60]
Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.13.E7 c 0 = 1 , c 1 subscript 𝑐 0 1 subscript 𝑐 1 {\displaystyle{\displaystyle c_{0}=1,c_{1}}}
c_{0} = 1,c_{1}

c[0] = 1; c[1]
Subscript[c, 0] == 1
 Subscript[c, 1]
Skipped - no semantic math Skipped - no semantic math - -
4.13.E8 c n = 1 n + 1 ( c n - 1 - k = 2 n - 1 k c k c n + 1 - k ) subscript 𝑐 𝑛 1 𝑛 1 subscript 𝑐 𝑛 1 superscript subscript 𝑘 2 𝑛 1 𝑘 subscript 𝑐 𝑘 subscript 𝑐 𝑛 1 𝑘 {\displaystyle{\displaystyle c_{n}=\frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}% kc_{k}c_{n+1-k}\right)}}
c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)
n 2 𝑛 2 {\displaystyle{\displaystyle n\geq 2}}
c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1))
Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None])
Skipped - no semantic math Skipped - no semantic math - -
4.13.E9 1 3 5 ( 2 n + 1 ) c 2 n + 1 = g n 1 3 5 2 𝑛 1 subscript 𝑐 2 𝑛 1 subscript 𝑔 𝑛 {\displaystyle{\displaystyle 1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1}=g_{n}}}
1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}

1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n]
1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n]
Skipped - no semantic math Skipped - no semantic math - -
4.14.E1 sin z = e i z - e - i z 2 i 𝑧 superscript 𝑒 imaginary-unit 𝑧 superscript 𝑒 imaginary-unit 𝑧 2 imaginary-unit {\displaystyle{\displaystyle\sin z=\frac{e^{\mathrm{i}z}-e^{-\mathrm{i}z}}{2% \mathrm{i}}}}
\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}

sin(z) = (exp(I*z)- exp(- I*z))/(2*I)
Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]
Successful Successful - Successful [Tested: 7]
4.14.E2 cos z = e i z + e - i z 2 𝑧 superscript 𝑒 imaginary-unit 𝑧 superscript 𝑒 imaginary-unit 𝑧 2 {\displaystyle{\displaystyle\cos z=\frac{e^{\mathrm{i}z}+e^{-\mathrm{i}z}}{2}}}
\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}

cos(z) = (exp(I*z)+ exp(- I*z))/(2)
Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]
Successful Successful - Successful [Tested: 7]
4.14.E3 cos z + i sin z = e + i z 𝑧 𝑖 𝑧 superscript 𝑒 𝑖 𝑧 {\displaystyle{\displaystyle\cos z+i\sin z=e^{+iz}}}
\cos@@{z}+ i\sin@@{z} = e^{+ iz}

cos(z)+ I*sin(z) = exp(+ I*z)
Cos[z]+ I*Sin[z] == Exp[+ I*z]
Successful Successful - Successful [Tested: 7]
4.14.E3 cos z - i sin z = e - i z 𝑧 𝑖 𝑧 superscript 𝑒 𝑖 𝑧 {\displaystyle{\displaystyle\cos z-i\sin z=e^{-iz}}}
\cos@@{z}- i\sin@@{z} = e^{- iz}

cos(z)- I*sin(z) = exp(- I*z)
Cos[z]- I*Sin[z] == Exp[- I*z]
Successful Successful - Successful [Tested: 7]
4.14.E4 tan z = sin z cos z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\tan z=\frac{\sin z}{\cos z}}}
\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}

tan(z) = (sin(z))/(cos(z))
Tan[z] == Divide[Sin[z],Cos[z]]
Successful Successful - Successful [Tested: 7]
4.14.E5 csc z = 1 sin z 𝑧 1 𝑧 {\displaystyle{\displaystyle\csc z=\frac{1}{\sin z}}}
\csc@@{z} = \frac{1}{\sin@@{z}}

csc(z) = (1)/(sin(z))
Csc[z] == Divide[1,Sin[z]]
Successful Successful - Successful [Tested: 7]
4.14.E6 sec z = 1 cos z 𝑧 1 𝑧 {\displaystyle{\displaystyle\sec z=\frac{1}{\cos z}}}
\sec@@{z} = \frac{1}{\cos@@{z}}

sec(z) = (1)/(cos(z))
Sec[z] == Divide[1,Cos[z]]
Successful Successful - Successful [Tested: 7]
4.14.E7 cot z = cos z sin z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\cot z=\frac{\cos z}{\sin z}}}
\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}

cot(z) = (cos(z))/(sin(z))
Cot[z] == Divide[Cos[z],Sin[z]]
Successful Successful - Successful [Tested: 7]
4.14.E7 cos z sin z = 1 tan z 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\cos z}{\sin z}=\frac{1}{\tan z}}}
\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}

(cos(z))/(sin(z)) = (1)/(tan(z))
Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]
Successful Successful - Successful [Tested: 7]
4.14.E8 sin ( z + 2 k π ) = sin z 𝑧 2 𝑘 𝜋 𝑧 {\displaystyle{\displaystyle\sin\left(z+2k\pi\right)=\sin z}}
\sin@{z+2k\pi} = \sin@@{z}

sin(z + 2*k*Pi) = sin(z)
Sin[z + 2*k*Pi] == Sin[z]
Successful Failure - Successful [Tested: 21]
4.14.E9 cos ( z + 2 k π ) = cos z 𝑧 2 𝑘 𝜋 𝑧 {\displaystyle{\displaystyle\cos\left(z+2k\pi\right)=\cos z}}
\cos@{z+2k\pi} = \cos@@{z}

cos(z + 2*k*Pi) = cos(z)
Cos[z + 2*k*Pi] == Cos[z]
Successful Failure - Successful [Tested: 21]
4.14.E10 tan ( z + k π ) = tan z 𝑧 𝑘 𝜋 𝑧 {\displaystyle{\displaystyle\tan\left(z+k\pi\right)=\tan z}}
\tan@{z+k\pi} = \tan@@{z}

tan(z + k*Pi) = tan(z)
Tan[z + k*Pi] == Tan[z]
Successful Failure - Successful [Tested: 21]
4.15.E1 cos ( x + i y ) = sin ( x + 1 2 π + i y ) 𝑥 𝑖 𝑦 𝑥 1 2 𝜋 𝑖 𝑦 {\displaystyle{\displaystyle\cos\left(x+iy\right)=\sin\left(x+\tfrac{1}{2}\pi+% iy\right)}}
\cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy}

cos(x + I*y) = sin(x +(1)/(2)*Pi + I*y)
Cos[x + I*y] == Sin[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.15.E2 cot ( x + i y ) = - tan ( x + 1 2 π + i y ) 𝑥 𝑖 𝑦 𝑥 1 2 𝜋 𝑖 𝑦 {\displaystyle{\displaystyle\cot\left(x+iy\right)=-\tan\left(x+\tfrac{1}{2}\pi% +iy\right)}}
\cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy}

cot(x + I*y) = - tan(x +(1)/(2)*Pi + I*y)
Cot[x + I*y] == - Tan[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.15.E3 sec ( x + i y ) = csc ( x + 1 2 π + i y ) 𝑥 𝑖 𝑦 𝑥 1 2 𝜋 𝑖 𝑦 {\displaystyle{\displaystyle\sec\left(x+iy\right)=\csc\left(x+\tfrac{1}{2}\pi+% iy\right)}}
\sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy}

sec(x + I*y) = csc(x +(1)/(2)*Pi + I*y)
Sec[x + I*y] == Csc[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.17.E1 lim z 0 sin z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\sin z}{z}=1}}
\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1

limit((sin(z))/(z), z = 0) = 1
Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E2 lim z 0 tan z z = 1 subscript 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\tan z}{z}=1}}
\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1

limit((tan(z))/(z), z = 0) = 1
Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E3 lim z 0 1 - cos z z 2 = 1 2 subscript 𝑧 0 1 𝑧 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{1-\cos z}{z^{2}}=\frac{1}{2}}}
\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}

limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]
4.18.E1 2 x π sin x 2 𝑥 𝜋 𝑥 {\displaystyle{\displaystyle\frac{2x}{\pi}\leq\sin x}}
\frac{2x}{\pi} \leq \sin@@{x}
0 x , x 1 2 π formulae-sequence 0 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle 0\leq x,x\leq\frac{1}{2}\pi}}
(2*x)/(Pi) <= sin(x)
Divide[2*x,Pi] <= Sin[x]
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.18.E1 sin x x 𝑥 𝑥 {\displaystyle{\displaystyle\sin x\leq x}}
\sin@@{x} \leq x
0 x , x 1 2 π formulae-sequence 0 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle 0\leq x,x\leq\frac{1}{2}\pi}}
sin(x) <= x
Sin[x] <= x
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.18.E2 x tan x 𝑥 𝑥 {\displaystyle{\displaystyle x\leq\tan x}}
x \leq \tan@@{x}
0 x , x < 1 2 π formulae-sequence 0 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle 0\leq x,x<\frac{1}{2}\pi}}
x <= tan(x)
x <= Tan[x]
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.18.E3 cos x sin x x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\cos x\leq\frac{\sin x}{x}}}
\cos@@{x} \leq \frac{\sin@@{x}}{x}
0 x , x π formulae-sequence 0 𝑥 𝑥 𝜋 {\displaystyle{\displaystyle 0\leq x,x\leq\pi}}
cos(x) <= (sin(x))/(x)
Cos[x] <= Divide[Sin[x],x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.18.E3 sin x x 1 𝑥 𝑥 1 {\displaystyle{\displaystyle\frac{\sin x}{x}\leq 1}}
\frac{\sin@@{x}}{x} \leq 1
0 x , x π formulae-sequence 0 𝑥 𝑥 𝜋 {\displaystyle{\displaystyle 0\leq x,x\leq\pi}}
(sin(x))/(x) <= 1
Divide[Sin[x],x] <= 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.18.E4 π < sin ( π x ) x ( 1 - x ) 𝜋 𝜋 𝑥 𝑥 1 𝑥 {\displaystyle{\displaystyle\pi<\frac{\sin\left(\pi x\right)}{x(1-x)}}}
\pi < \frac{\sin@{\pi x}}{x(1-x)}
0 < x , x < 1 formulae-sequence 0 𝑥 𝑥 1 {\displaystyle{\displaystyle 0<x,x<1}}
Pi < (sin(Pi*x))/(x*(1 - x))
Pi < Divide[Sin[Pi*x],x*(1 - x)]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.18.E4 sin ( π x ) x ( 1 - x ) 4 𝜋 𝑥 𝑥 1 𝑥 4 {\displaystyle{\displaystyle\frac{\sin\left(\pi x\right)}{x(1-x)}\leq 4}}
\frac{\sin@{\pi x}}{x(1-x)} \leq 4
0 < x , x < 1 formulae-sequence 0 𝑥 𝑥 1 {\displaystyle{\displaystyle 0<x,x<1}}
(sin(Pi*x))/(x*(1 - x)) <= 4
Divide[Sin[Pi*x],x*(1 - x)] <= 4
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.18.E5 | sinh y | | sin z | cosh y 𝑦 𝑧 𝑦 {\displaystyle{\displaystyle|\sinh y|\leq|\sin z|\leq\cosh y}}
|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}

abs(sinh(y)) <= abs(sin(x + y*I)) <= cosh(y)
Abs[Sinh[y]] <= Abs[Sin[x + y*I]] <= Cosh[y]
Failure Failure Error Successful [Tested: 18]
4.18.E6 | sinh y | | cos z | cosh y 𝑦 𝑧 𝑦 {\displaystyle{\displaystyle|\sinh y|\leq|\cos z|\leq\cosh y}}
|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}

abs(sinh(y)) <= abs(cos(x + y*I)) <= cosh(y)
Abs[Sinh[y]] <= Abs[Cos[x + y*I]] <= Cosh[y]
Failure Failure Error Successful [Tested: 18]
4.18.E7 | csc z | csch | y | 𝑧 𝑦 {\displaystyle{\displaystyle|\csc z|\leq\operatorname{csch}|y|}}
|\csc@@{z}| \leq \csch@@{|y|}

abs(csc(x + y*I)) <= csch(abs(y))
Abs[Csc[x + y*I]] <= Csch[Abs[y]]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
4.18.E8 | cos z | cosh | z | 𝑧 𝑧 {\displaystyle{\displaystyle|\cos z|\leq\cosh|z|}}
|\cos@@{z}| \leq \cosh@@{|z|}

abs(cos(z)) <= cosh(abs(z))
Abs[Cos[z]] <= Cosh[Abs[z]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.18.E9 | sin z | sinh | z | 𝑧 𝑧 {\displaystyle{\displaystyle|\sin z|\leq\sinh|z|}}
|\sin@@{z}| \leq \sinh@@{|z|}

abs(sin(z)) <= sinh(abs(z))
Abs[Sin[z]] <= Sinh[Abs[z]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.18#Ex1 | cos z | < 2 𝑧 2 {\displaystyle{\displaystyle|\cos z|<2}}
|\cos@@{z}| < 2

abs(cos(z)) < 2
Abs[Cos[z]] < 2
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.18#Ex2 | sin z | 6 5 | z | 𝑧 6 5 𝑧 {\displaystyle{\displaystyle|\sin z|\leq\tfrac{6}{5}|z|}}
|\sin@@{z}| \leq \tfrac{6}{5}|z|
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
abs(sin(z)) <= (6)/(5)*abs(z)
Abs[Sin[z]] <= Divide[6,5]*Abs[z]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.19.E7 ln ( sin z z ) = n = 1 ( - 1 ) n 2 2 n - 1 B 2 n n ( 2 n ) ! z 2 n 𝑧 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 2 2 𝑛 1 Bernoulli-number-B 2 𝑛 𝑛 2 𝑛 superscript 𝑧 2 𝑛 {\displaystyle{\displaystyle\ln\left(\frac{\sin z}{z}\right)=\sum_{n=1}^{% \infty}\frac{(-1)^{n}2^{2n-1}B_{2n}}{n(2n)!}z^{2n}}}
\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}
| z | < π 𝑧 𝜋 {\displaystyle{\displaystyle|z|<\pi}}
ln((sin(z))/(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
Log[Divide[Sin[z],z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.19.E8 ln ( cos z ) = n = 1 ( - 1 ) n 2 2 n - 1 ( 2 2 n - 1 ) B 2 n n ( 2 n ) ! z 2 n 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 2 2 𝑛 1 superscript 2 2 𝑛 1 Bernoulli-number-B 2 𝑛 𝑛 2 𝑛 superscript 𝑧 2 𝑛 {\displaystyle{\displaystyle\ln\left(\cos z\right)=\sum_{n=1}^{\infty}\frac{(-% 1)^{n}2^{2n-1}(2^{2n}-1)B_{2n}}{n(2n)!}z^{2n}}}
\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}
| z | < 1 2 π 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|z|<\frac{1}{2}\pi}}
ln(cos(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
Log[Cos[z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Failure Failure Manual Skip! Successful [Tested: 6]
4.19.E9 ln ( tan z z ) = n = 1 ( - 1 ) n - 1 2 2 n ( 2 2 n - 1 - 1 ) B 2 n n ( 2 n ) ! z 2 n 𝑧 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 1 superscript 2 2 𝑛 superscript 2 2 𝑛 1 1 Bernoulli-number-B 2 𝑛 𝑛 2 𝑛 superscript 𝑧 2 𝑛 {\displaystyle{\displaystyle\ln\left(\frac{\tan z}{z}\right)=\sum_{n=1}^{% \infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)B_{2n}}{n(2n)!}z^{2n}}}
\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}
| z | < 1 2 π 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|z|<\frac{1}{2}\pi}}
ln((tan(z))/(z)) = sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
Log[Divide[Tan[z],z]] == Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Failure Failure Manual Skip! Successful [Tested: 6]
4.20.E1 d d z sin z = cos z derivative 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\sin z=\cos z}}
\deriv{}{z}\sin@@{z} = \cos@@{z}

diff(sin(z), z) = cos(z)
D[Sin[z], z] == Cos[z]
Successful Successful - Successful [Tested: 7]
4.20.E2 d d z cos z = - sin z derivative 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\cos z=-\sin z}}
\deriv{}{z}\cos@@{z} = -\sin@@{z}

diff(cos(z), z) = - sin(z)
D[Cos[z], z] == - Sin[z]
Successful Successful - Successful [Tested: 7]
4.20.E3 d d z tan z = sec 2 z derivative 𝑧 𝑧 2 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\tan z={\sec^{2}}z}}
\deriv{}{z}\tan@@{z} = \sec^{2}@@{z}

diff(tan(z), z) = (sec(z))^(2)
D[Tan[z], z] == (Sec[z])^(2)
Successful Successful - Successful [Tested: 7]
4.20.E4 d d z csc z = - csc z cot z derivative 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\csc z=-\csc z\cot z}}
\deriv{}{z}\csc@@{z} = -\csc@@{z}\cot@@{z}

diff(csc(z), z) = - csc(z)*cot(z)
D[Csc[z], z] == - Csc[z]*Cot[z]
Successful Successful - Successful [Tested: 7]
4.20.E5 d d z sec z = sec z tan z derivative 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\sec z=\sec z\tan z}}
\deriv{}{z}\sec@@{z} = \sec@@{z}\tan@@{z}

diff(sec(z), z) = sec(z)*tan(z)
D[Sec[z], z] == Sec[z]*Tan[z]
Successful Successful - Successful [Tested: 7]
4.20.E6 d d z cot z = - csc 2 z derivative 𝑧 𝑧 2 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\cot z=-{\csc^{2}}z}}
\deriv{}{z}\cot@@{z} = -\csc^{2}@@{z}

diff(cot(z), z) = - (csc(z))^(2)
D[Cot[z], z] == - (Csc[z])^(2)
Successful Successful - Successful [Tested: 7]
4.20.E7 d n d z n sin z = sin ( z + 1 2 n π ) derivative 𝑧 𝑛 𝑧 𝑧 1 2 𝑛 𝜋 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\sin z=% \sin\left(z+\tfrac{1}{2}n\pi\right)}}
\deriv[n]{}{z}\sin@@{z} = \sin@{z+\tfrac{1}{2}n\pi}

diff(sin(z), [z$(n)]) = sin(z +(1)/(2)*n*Pi)
D[Sin[z], {z, n}] == Sin[z +Divide[1,2]*n*Pi]
Successful Successful - Successful [Tested: 21]
4.20.E8 d n d z n cos z = cos ( z + 1 2 n π ) derivative 𝑧 𝑛 𝑧 𝑧 1 2 𝑛 𝜋 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\cos z=% \cos\left(z+\tfrac{1}{2}n\pi\right)}}
\deriv[n]{}{z}\cos@@{z} = \cos@{z+\tfrac{1}{2}n\pi}

diff(cos(z), [z$(n)]) = cos(z +(1)/(2)*n*Pi)
D[Cos[z], {z, n}] == Cos[z +Divide[1,2]*n*Pi]
Successful Successful - Successful [Tested: 21]
4.20.E9 d 2 w d z 2 + a 2 w = 0 derivative 𝑤 𝑧 2 superscript 𝑎 2 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+a^{2}w% =0}}
\deriv[2]{w}{z}+a^{2}w = 0

diff(w, [z$(2)])+ (a)^(2)* w = 0
D[w, {z, 2}]+ (a)^(2)* w == 0
Failure Failure
Failed [300 / 300]
Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E10 ( d w d z ) 2 + a 2 w 2 = 1 superscript derivative 𝑤 𝑧 2 superscript 𝑎 2 superscript 𝑤 2 1 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{2}+a% ^{2}w^{2}=1}}
\left(\deriv{w}{z}\right)^{2}+a^{2}w^{2} = 1

(diff(w, z))^(2)+ (a)^(2)* (w)^(2) = 1
(D[w, z])^(2)+ (a)^(2)* (w)^(2) == 1
Failure Failure
Failed [272 / 300]
Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [272 / 300]
Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E11 d w d z - a 2 w 2 = 1 derivative 𝑤 𝑧 superscript 𝑎 2 superscript 𝑤 2 1 {\displaystyle{\displaystyle\frac{\mathrm{d}w}{\mathrm{d}z}-a^{2}w^{2}=1}}
\deriv{w}{z}-a^{2}w^{2} = 1

diff(w, z)- (a)^(2)* (w)^(2) = 1
D[w, z]- (a)^(2)* (w)^(2) == 1
Failure Failure
Failed [300 / 300]
Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E12 w = A cos ( a z ) + B sin ( a z ) 𝑤 𝐴 𝑎 𝑧 𝐵 𝑎 𝑧 {\displaystyle{\displaystyle w=A\cos\left(az\right)+B\sin\left(az\right)}}
w = A\cos@{az}+B\sin@{az}

w = A*cos(a*z)+ B*sin(a*z)
w == A*Cos[a*z]+ B*Sin[a*z]
Failure Failure
Failed [300 / 300]
Result: 1.138704571+1.826991634*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.586785764-.8180862806*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.979513822-1.625744019*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -.8007246334+.1975056737*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.138704570618858, 1.8269916342928783]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.5867857625486925, -0.8180862808059206]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E13 w = ( 1 / a ) sin ( a z + c ) 𝑤 1 𝑎 𝑎 𝑧 𝑐 {\displaystyle{\displaystyle w=(1/a)\sin\left(az+c\right)}}
w = (1/a)\sin@{az+c}

w = (1/a)*sin(a*z + c)
w == (1/a)*Sin[a*z + c]
Failure Failure
Failed [300 / 300]
Result: .5761075690+1.016359912*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -.288669860e-1-.3275339707*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.1554713530-.2104590960*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .6937358929+1.037178419*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.5761075684969701, 1.0163599120046827]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.028866985825810376, -0.3275339701177746]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E14 w = ( 1 / a ) tan ( a z + c ) 𝑤 1 𝑎 𝑎 𝑧 𝑐 {\displaystyle{\displaystyle w=(1/a)\tan\left(az+c\right)}}
w = (1/a)\tan@{az+c}

w = (1/a)*tan(a*z + c)
w == (1/a)*Tan[a*z + c]
Failure Failure
Failed [300 / 300]
Result: 1.000937702+.460093509e-1*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .7686167751-.1524919258*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .9655903492+1.180557377*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .7863384613+.9337431086*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.0009377022129278, 0.04600935086169866]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.7686167748870922, -0.1524919257161706]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E1 sin u + cos u = 2 sin ( u + 1 4 π ) 𝑢 𝑢 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sin u+\cos u=\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi% \right)}}
\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}

sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)
Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 sin u - cos u = 2 sin ( u - 1 4 π ) 𝑢 𝑢 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sin u-\cos u=\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi% \right)}}
\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}

sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)
Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 2 sin ( u + 1 4 π ) = + 2 cos ( u - 1 4 π ) 2 𝑢 1 4 𝜋 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi\right)=+\sqrt{% 2}\cos\left(u-\tfrac{1}{4}\pi\right)}}
\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}

sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)
Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 2 sin ( u - 1 4 π ) = - 2 cos ( u + 1 4 π ) 2 𝑢 1 4 𝜋 2 𝑢 1 4 𝜋 {\displaystyle{\displaystyle\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi\right)=-\sqrt{% 2}\cos\left(u+\tfrac{1}{4}\pi\right)}}
\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}

sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)
Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E2 sin ( u + v ) = sin u cos v + cos u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\sin\left(u+v\right)=\sin u\cos v+\cos u\sin v}}
\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}

sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)
Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E2 sin ( u - v ) = sin u cos v - cos u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\sin\left(u-v\right)=\sin u\cos v-\cos u\sin v}}
\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}

sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)
Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E3 cos ( u + v ) = cos u cos v - sin u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\cos\left(u+v\right)=\cos u\cos v-\sin u\sin v}}
\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}

cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)
Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E3 cos ( u - v ) = cos u cos v + sin u sin v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\cos\left(u-v\right)=\cos u\cos v+\sin u\sin v}}
\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}

cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)
Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E4 tan ( u + v ) = tan u + tan v 1 - tan u tan v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\tan\left(u+v\right)=\frac{\tan u+\tan v}{1-\tan u% \tan v}}}
\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}

tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))
Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]
Successful Successful - Successful [Tested: 100]
4.21.E4 tan ( u - v ) = tan u - tan v 1 + tan u tan v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\tan\left(u-v\right)=\frac{\tan u-\tan v}{1+\tan u% \tan v}}}
\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}

tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))
Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]
Successful Successful - Successful [Tested: 100]
4.21.E5 cot ( u + v ) = + cot u cot v - 1 cot u + cot v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\cot\left(u+v\right)=\frac{+\cot u\cot v-1}{\cot u% +\cot v}}}
\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}

cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))
Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E5 cot ( u - v ) = - cot u cot v - 1 cot u - cot v 𝑢 𝑣 𝑢 𝑣 1 𝑢 𝑣 {\displaystyle{\displaystyle\cot\left(u-v\right)=\frac{-\cot u\cot v-1}{\cot u% -\cot v}}}
\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}

cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))
Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E6 sin u + sin v = 2 sin ( u + v 2 ) cos ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\sin u+\sin v=2\sin\left(\frac{u+v}{2}\right)\cos% \left(\frac{u-v}{2}\right)}}
\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}

sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))
Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E7 sin u - sin v = 2 cos ( u + v 2 ) sin ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\sin u-\sin v=2\cos\left(\frac{u+v}{2}\right)\sin% \left(\frac{u-v}{2}\right)}}
\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}

sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))
Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E8 cos u + cos v = 2 cos ( u + v 2 ) cos ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\cos u+\cos v=2\cos\left(\frac{u+v}{2}\right)\cos% \left(\frac{u-v}{2}\right)}}
\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}

cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))
Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E9 cos u - cos v = - 2 sin ( u + v 2 ) sin ( u - v 2 ) 𝑢 𝑣 2 𝑢 𝑣 2 𝑢 𝑣 2 {\displaystyle{\displaystyle\cos u-\cos v=-2\sin\left(\frac{u+v}{2}\right)\sin% \left(\frac{u-v}{2}\right)}}
\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}

cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))
Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E10 tan u + tan v = sin ( u + v ) cos u cos v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\tan u+\tan v=\frac{\sin\left(u+v\right)}{\cos u% \cos v}}}
\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}

tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))
Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]
Successful Successful - Successful [Tested: 100]
4.21.E10 tan u - tan v = sin ( u - v ) cos u cos v 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle\tan u-\tan v=\frac{\sin\left(u-v\right)}{\cos u% \cos v}}}
\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}

tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))
Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]
Successful Successful - Successful [Tested: 100]
4.21.E11 cot u + cot v = sin ( v + u ) sin u sin v 𝑢 𝑣 𝑣 𝑢 𝑢 𝑣 {\displaystyle{\displaystyle\cot u+\cot v=\frac{\sin\left(v+u\right)}{\sin u% \sin v}}}
\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}

cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))
Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]
Successful Successful - Successful [Tested: 100]
4.21.E11 cot u - cot v = sin ( v - u ) sin u sin v 𝑢 𝑣 𝑣 𝑢 𝑢 𝑣 {\displaystyle{\displaystyle\cot u-\cot v=\frac{\sin\left(v-u\right)}{\sin u% \sin v}}}
\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}

cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))
Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]
Successful Successful - Successful [Tested: 100]
4.21.E12 sin 2 z + cos 2 z = 1 2 𝑧 2 𝑧 1 {\displaystyle{\displaystyle{\sin^{2}}z+{\cos^{2}}z=1}}
\sin^{2}@@{z}+\cos^{2}@@{z} = 1

(sin(z))^(2)+ (cos(z))^(2) = 1
(Sin[z])^(2)+ (Cos[z])^(2) == 1
Successful Successful - Successful [Tested: 7]
4.21.E13 sec 2 z = 1 + tan 2 z 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\sec^{2}}z=1+{\tan^{2}}z}}
\sec^{2}@@{z} = 1+\tan^{2}@@{z}

(sec(z))^(2) = 1 + (tan(z))^(2)
(Sec[z])^(2) == 1 + (Tan[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E14 csc 2 z = 1 + cot 2 z 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\csc^{2}}z=1+{\cot^{2}}z}}
\csc^{2}@@{z} = 1+\cot^{2}@@{z}

(csc(z))^(2) = 1 + (cot(z))^(2)
(Csc[z])^(2) == 1 + (Cot[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E15 2 sin u sin v = cos ( u - v ) - cos ( u + v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\sin u\sin v=\cos\left(u-v\right)-\cos\left(u+v% \right)}}
2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}

2*sin(u)*sin(v) = cos(u - v)- cos(u + v)
2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E16 2 cos u cos v = cos ( u - v ) + cos ( u + v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\cos u\cos v=\cos\left(u-v\right)+\cos\left(u+v% \right)}}
2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}

2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)
2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E17 2 sin u cos v = sin ( u - v ) + sin ( u + v ) 2 𝑢 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle 2\sin u\cos v=\sin\left(u-v\right)+\sin\left(u+v% \right)}}
2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}

2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)
2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E18 sin 2 u - sin 2 v = sin ( u + v ) sin ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\sin^{2}}u-{\sin^{2}}v=\sin\left(u+v\right)\sin% \left(u-v\right)}}
\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}

(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)
(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E19 cos 2 u - cos 2 v = - sin ( u + v ) sin ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\cos^{2}}u-{\cos^{2}}v=-\sin\left(u+v\right)\sin% \left(u-v\right)}}
\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}

(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)
(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E20 cos 2 u - sin 2 v = cos ( u + v ) cos ( u - v ) 2 𝑢 2 𝑣 𝑢 𝑣 𝑢 𝑣 {\displaystyle{\displaystyle{\cos^{2}}u-{\sin^{2}}v=\cos\left(u+v\right)\cos% \left(u-v\right)}}
\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}

(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)
(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E21 sin z 2 = + ( 1 - cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\sin\frac{z}{2}=+\left(\frac{1-\cos z}{2}\right)^{% 1/2}}}
\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}

sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)
Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.5419255224+.8655716642*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.541925522457336, 0.8655716640572733]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8655770337160631, -0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E21 sin z 2 = - ( 1 - cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\sin\frac{z}{2}=-\left(\frac{1-\cos z}{2}\right)^{% 1/2}}}
\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}

sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)
Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)
Failure Failure
Failed [5 / 7]
Result: .8655770340+.4585952894*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .5419255224-.8655716642*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.363277520
Test Values: {z = 1.5}

Result: .4948079184
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.8655770337160631, 0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5419255224573365, -0.8655716640572731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E22 cos z 2 = + ( 1 + cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\cos\frac{z}{2}=+\left(\frac{1+\cos z}{2}\right)^{% 1/2}}}
\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}

cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)
Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.21.E22 cos z 2 = - ( 1 + cos z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\cos\frac{z}{2}=-\left(\frac{1+\cos z}{2}\right)^{% 1/2}}}
\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}

cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)
Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)
Failure Failure
Failed [7 / 7]
Result: 1.872439139-.2119959694*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: 2.122352334+.2210167318*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.872439139-.2119959694*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[1.872439138961815, -0.2119959693051084]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.1223523339444896, 0.22101673165487346]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 tan z 2 = + ( 1 - cos z 1 + cos z ) 1 / 2 𝑧 2 superscript 1 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle\tan\frac{z}{2}=+\left(\frac{1-\cos z}{1+\cos z}% \right)^{1/2}}}
\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}

tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)
Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.4211742148+.8595320616*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.4211742148849969, 0.8595320613685856]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.858086492859854, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E23 tan z 2 = - ( 1 - cos z 1 + cos z ) 1 / 2 𝑧 2 superscript 1 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle\tan\frac{z}{2}=-\left(\frac{1-\cos z}{1+\cos z}% \right)^{1/2}}}
\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}

tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)
Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)
Failure Failure
Failed [5 / 7]
Result: .8580864930+.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .4211742148-.8595320616*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.863192920
Test Values: {z = 1.5}

Result: .5106838424
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.858086492859854, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4211742148849973, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 + ( 1 - cos z 1 + cos z ) 1 / 2 = 1 - cos z sin z superscript 1 𝑧 1 𝑧 1 2 1 𝑧 𝑧 {\displaystyle{\displaystyle+\left(\frac{1-\cos z}{1+\cos z}\right)^{1/2}=% \frac{1-\cos z}{\sin z}}}
+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}

+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))
+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]
Failure Failure
Failed [2 / 7]
Result: .4211742148-.8595320615*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .8580864930+.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[0.42117421488499684, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.8580864928598539, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E23 - ( 1 - cos z 1 + cos z ) 1 / 2 = 1 - cos z sin z superscript 1 𝑧 1 𝑧 1 2 1 𝑧 𝑧 {\displaystyle{\displaystyle-\left(\frac{1-\cos z}{1+\cos z}\right)^{1/2}=% \frac{1-\cos z}{\sin z}}}
-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}

-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))
-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]
Failure Failure
Failed [5 / 7]
Result: -.8580864930-.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: -1.863192920
Test Values: {z = 1.5}

Result: -.5106838424
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[-0.8580864928598539, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.4211742148849972, 0.8595320613685855]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 1 - cos z sin z = sin z 1 + cos z 1 𝑧 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{1-\cos z}{\sin z}=\frac{\sin z}{1+\cos z}}}
\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}

(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))
Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
4.21.E24 sin ( - z ) = - sin z 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(-z\right)=-\sin z}}
\sin@{-z} = -\sin@@{z}

sin(- z) = - sin(z)
Sin[- z] == - Sin[z]
Successful Successful - Successful [Tested: 7]
4.21.E25 cos ( - z ) = cos z 𝑧 𝑧 {\displaystyle{\displaystyle\cos\left(-z\right)=\cos z}}
\cos@{-z} = \cos@@{z}

cos(- z) = cos(z)
Cos[- z] == Cos[z]
Successful Successful - Successful [Tested: 7]
4.21.E26 tan ( - z ) = - tan z 𝑧 𝑧 {\displaystyle{\displaystyle\tan\left(-z\right)=-\tan z}}
\tan@{-z} = -\tan@@{z}

tan(- z) = - tan(z)
Tan[- z] == - Tan[z]
Successful Successful - Successful [Tested: 7]
4.21.E27 sin ( 2 z ) = 2 sin z cos z 2 𝑧 2 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(2z\right)=2\sin z\cos z}}
\sin@{2z} = 2\sin@@{z}\cos@@{z}

sin(2*z) = 2*sin(z)*cos(z)
Sin[2*z] == 2*Sin[z]*Cos[z]
Successful Successful - Successful [Tested: 7]
4.21.E27 2 sin z cos z = 2 tan z 1 + tan 2 z 2 𝑧 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle 2\sin z\cos z=\frac{2\tan z}{1+{\tan^{2}}z}}}
2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}

2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))
2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E28 cos ( 2 z ) = 2 cos 2 z - 1 2 𝑧 2 2 𝑧 1 {\displaystyle{\displaystyle\cos\left(2z\right)=2{\cos^{2}}z-1}}
\cos@{2z} = 2\cos^{2}@@{z}-1

cos(2*z) = 2*(cos(z))^(2)- 1
Cos[2*z] == 2*(Cos[z])^(2)- 1
Successful Successful - Successful [Tested: 7]
4.21.E28 2 cos 2 z - 1 = 1 - 2 sin 2 z 2 2 𝑧 1 1 2 2 𝑧 {\displaystyle{\displaystyle 2{\cos^{2}}z-1=1-2{\sin^{2}}z}}
2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}

2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)
2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E28 1 - 2 sin 2 z = cos 2 z - sin 2 z 1 2 2 𝑧 2 𝑧 2 𝑧 {\displaystyle{\displaystyle 1-2{\sin^{2}}z={\cos^{2}}z-{\sin^{2}}z}}
1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}

1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)
1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E28 cos 2 z - sin 2 z = 1 - tan 2 z 1 + tan 2 z 2 𝑧 2 𝑧 1 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\cos^{2}}z-{\sin^{2}}z=\frac{1-{\tan^{2}}z}{1+{% \tan^{2}}z}}}
\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}

(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))
(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E29 tan ( 2 z ) = 2 tan z 1 - tan 2 z 2 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle\tan\left(2z\right)=\frac{2\tan z}{1-{\tan^{2}}z}}}
\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}

tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))
Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E29 2 tan z 1 - tan 2 z = 2 cot z cot 2 z - 1 2 𝑧 1 2 𝑧 2 𝑧 2 𝑧 1 {\displaystyle{\displaystyle\frac{2\tan z}{1-{\tan^{2}}z}=\frac{2\cot z}{{\cot% ^{2}}z-1}}}
\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}

(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)
Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]
Successful Successful - Successful [Tested: 7]
4.21.E29 2 cot z cot 2 z - 1 = 2 cot z - tan z 2 𝑧 2 𝑧 1 2 𝑧 𝑧 {\displaystyle{\displaystyle\frac{2\cot z}{{\cot^{2}}z-1}=\frac{2}{\cot z-\tan z% }}}
\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}

(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))
Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]
Successful Successful - Successful [Tested: 7]
4.21.E30 sin ( 3 z ) = 3 sin z - 4 sin 3 z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\sin\left(3z\right)=3\sin z-4{\sin^{3}}z}}
\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}

sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)
Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)
Successful Successful - Successful [Tested: 7]
4.21.E31 cos ( 3 z ) = - 3 cos z + 4 cos 3 z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\cos\left(3z\right)=-3\cos z+4{\cos^{3}}z}}
\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}

cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)
Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)
Successful Successful - Successful [Tested: 7]
4.21.E32 sin ( 4 z ) = 8 cos 3 z sin z - 4 cos z sin z 4 𝑧 8 3 𝑧 𝑧 4 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(4z\right)=8{\cos^{3}}z\sin z-4\cos z\sin z}}
\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}

sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)
Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]
Successful Successful - Successful [Tested: 7]
4.21.E33 cos ( 4 z ) = 8 cos 4 z - 8 cos 2 z + 1 4 𝑧 8 4 𝑧 8 2 𝑧 1 {\displaystyle{\displaystyle\cos\left(4z\right)=8{\cos^{4}}z-8{\cos^{2}}z+1}}
\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1

cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1
Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1
Successful Successful - Successful [Tested: 7]
4.21.E34 cos ( n z ) + i sin ( n z ) = ( cos z + i sin z ) n 𝑛 𝑧 𝑖 𝑛 𝑧 superscript 𝑧 𝑖 𝑧 𝑛 {\displaystyle{\displaystyle\cos\left(nz\right)+i\sin\left(nz\right)=(\cos z+i% \sin z)^{n}}}
\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}

cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)
Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)
Successful Failure - Successful [Tested: 21]
4.21.E35 sin ( n z ) = 2 n - 1 k = 0 n - 1 sin ( z + k π n ) 𝑛 𝑧 superscript 2 𝑛 1 superscript subscript product 𝑘 0 𝑛 1 𝑧 𝑘 𝜋 𝑛 {\displaystyle{\displaystyle\sin\left(nz\right)=2^{n-1}\prod_{k=0}^{n-1}\sin% \left(z+\frac{k\pi}{n}\right)}}
\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}

sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)
Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]
Failure Successful Successful [Tested: 21] Successful [Tested: 7]
4.21#Ex1 sin z = 2 t 1 + t 2 𝑧 2 𝑡 1 superscript 𝑡 2 {\displaystyle{\displaystyle\sin z=\frac{2t}{1+t^{2}}}}
\sin@@{z} = \frac{2t}{1+t^{2}}

sin(z) = (2*t)/(1 + (t)^(2))
Sin[z] == Divide[2*t,1 + (t)^(2)]
Failure Failure
Failed [42 / 42]
Result: 1.782057258+.3375964631*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}

Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}

Result: 1.593808282-.8586367171*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}

Result: .640965885e-1-.3375964631*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[1.782057257377061, 0.33759646322287]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.25234556426971166, 0.8586367168171449]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21#Ex2 cos z = 1 - t 2 1 + t 2 𝑧 1 superscript 𝑡 2 1 superscript 𝑡 2 {\displaystyle{\displaystyle\cos z=\frac{1-t^{2}}{1+t^{2}}}}
\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}

cos(z) = (1 - (t)^(2))/(1 + (t)^(2))
Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]
Failure Failure
Failed [42 / 42]
Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}

Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}

Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}

Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[1.1151584036726099, -0.3969495502290325]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.612380901479495, 0.46907537626850365]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E37 sin z = sin x cosh y + i cos x sinh y 𝑧 𝑥 𝑦 imaginary-unit 𝑥 𝑦 {\displaystyle{\displaystyle\sin z=\sin x\cosh y+\mathrm{i}\cos x\sinh y}}
\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}

sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)
Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]
Successful Successful - Successful [Tested: 18]
4.21.E38 cos z = cos x cosh y - i sin x sinh y 𝑧 𝑥 𝑦 imaginary-unit 𝑥 𝑦 {\displaystyle{\displaystyle\cos z=\cos x\cosh y-\mathrm{i}\sin x\sinh y}}
\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}

cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)
Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]
Successful Successful - Successful [Tested: 18]
4.21.E39 tan z = sin ( 2 x ) + i sinh ( 2 y ) cos ( 2 x ) + cosh ( 2 y ) 𝑧 2 𝑥 imaginary-unit 2 𝑦 2 𝑥 2 𝑦 {\displaystyle{\displaystyle\tan z=\frac{\sin\left(2x\right)+\mathrm{i}\sinh% \left(2y\right)}{\cos\left(2x\right)+\cosh\left(2y\right)}}}
\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}

tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))
Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]
Successful Successful - Successful [Tested: 18]
4.21.E40 cot z = sin ( 2 x ) - i sinh ( 2 y ) cosh ( 2 y ) - cos ( 2 x ) 𝑧 2 𝑥 imaginary-unit 2 𝑦 2 𝑦 2 𝑥 {\displaystyle{\displaystyle\cot z=\frac{\sin\left(2x\right)-\mathrm{i}\sinh% \left(2y\right)}{\cosh\left(2y\right)-\cos\left(2x\right)}}}
\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}

cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))
Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]
Successful Successful - Successful [Tested: 18]
4.21.E41 | sin z | = ( sin 2 x + sinh 2 y ) 1 / 2 𝑧 superscript 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle|\sin z|=({\sin^{2}}x+{\sinh^{2}}y)^{1/2}}}
|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}

abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)
Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.21.E41 ( sin 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) - cos ( 2 x ) ) ) 1 / 2 superscript 2 𝑥 2 𝑦 1 2 superscript 1 2 2 𝑦 2 𝑥 1 2 {\displaystyle{\displaystyle({\sin^{2}}x+{\sinh^{2}}y)^{1/2}=\left(\tfrac{1}{2% }\left(\cosh\left(2y\right)-\cos\left(2x\right)\right)\right)^{1/2}}}
(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}

((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)
((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.21.E42 | cos z | = ( cos 2 x + sinh 2 y ) 1 / 2 𝑧 superscript 2 𝑥 2 𝑦 1 2 {\displaystyle{\displaystyle|\cos z|=({\cos^{2}}x+{\sinh^{2}}y)^{1/2}}}
|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}

abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)
Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.21.E42 ( cos 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) + cos ( 2 x ) ) ) 1 / 2 superscript 2 𝑥 2 𝑦 1 2 superscript 1 2 2 𝑦 2 𝑥 1 2 {\displaystyle{\displaystyle({\cos^{2}}x+{\sinh^{2}}y)^{1/2}=\left(\tfrac{1}{2% }(\cosh\left(2y\right)+\cos\left(2x\right))\right)^{1/2}}}
(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}

((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)
((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.21.E43 | tan z | = ( cosh ( 2 y ) - cos ( 2 x ) cosh ( 2 y ) + cos ( 2 x ) ) 1 / 2 𝑧 superscript 2 𝑦 2 𝑥 2 𝑦 2 𝑥 1 2 {\displaystyle{\displaystyle|\tan z|=\left(\frac{\cosh\left(2y\right)-\cos% \left(2x\right)}{\cosh\left(2y\right)+\cos\left(2x\right)}\right)^{1/2}}}
|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}

abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)
Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)
Successful Failure - Successful [Tested: 18]
4.22.E1 sin z = z n = 1 ( 1 - z 2 n 2 π 2 ) 𝑧 𝑧 superscript subscript product 𝑛 1 1 superscript 𝑧 2 superscript 𝑛 2 superscript 𝜋 2 {\displaystyle{\displaystyle\sin z=z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n% ^{2}\pi^{2}}\right)}}
\sin@@{z} = z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}\pi^{2}}\right)

sin(z) = z*product(1 -((z)^(2))/((n)^(2)* (Pi)^(2)), n = 1..infinity)
Sin[z] == z*Product[1 -Divide[(z)^(2),(n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.22.E2 cos z = n = 1 ( 1 - 4 z 2 ( 2 n - 1 ) 2 π 2 ) 𝑧 superscript subscript product 𝑛 1 1 4 superscript 𝑧 2 superscript 2 𝑛 1 2 superscript 𝜋 2 {\displaystyle{\displaystyle\cos z=\prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(% 2n-1)^{2}\pi^{2}}\right)}}
\cos@@{z} = \prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)

cos(z) = product(1 -(4*(z)^(2))/((2*n - 1)^(2)* (Pi)^(2)), n = 1..infinity)
Cos[z] == Product[1 -Divide[4*(z)^(2),(2*n - 1)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.22.E3 cot z = 1 z + 2 z n = 1 1 z 2 - n 2 π 2 𝑧 1 𝑧 2 𝑧 superscript subscript 𝑛 1 1 superscript 𝑧 2 superscript 𝑛 2 superscript 𝜋 2 {\displaystyle{\displaystyle\cot z=\frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z% ^{2}-n^{2}\pi^{2}}}}
\cot@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}-n^{2}\pi^{2}}

cot(z) = (1)/(z)+ 2*z*sum((1)/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)
Cot[z] == Divide[1,z]+ 2*z*Sum[Divide[1,(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.22.E4 csc 2 z = n = - 1 ( z - n π ) 2 2 𝑧 superscript subscript 𝑛 1 superscript 𝑧 𝑛 𝜋 2 {\displaystyle{\displaystyle{\csc^{2}}z=\sum_{n=-\infty}^{\infty}\frac{1}{(z-n% \pi)^{2}}}}
\csc^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^{2}}

(csc(z))^(2) = sum((1)/((z - n*Pi)^(2)), n = - infinity..infinity)
(Csc[z])^(2) == Sum[Divide[1,(z - n*Pi)^(2)], {n, - Infinity, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.22.E5 csc z = 1 z + 2 z n = 1 ( - 1 ) n z 2 - n 2 π 2 𝑧 1 𝑧 2 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 𝑧 2 superscript 𝑛 2 superscript 𝜋 2 {\displaystyle{\displaystyle\csc z=\frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)% ^{n}}{z^{2}-n^{2}\pi^{2}}}}
\csc@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}-n^{2}\pi^{2}}

csc(z) = (1)/(z)+ 2*z*sum(((- 1)^(n))/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)
Csc[z] == Divide[1,z]+ 2*z*Sum[Divide[(- 1)^(n),(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.23.E1 Arcsin z = 0 z d t ( 1 - t 2 ) 1 / 2 multivalued-inverse-sine 𝑧 superscript subscript 0 𝑧 𝑡 superscript 1 superscript 𝑡 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}z=\int_{0}^{z}\frac{\mathrm{d% }t}{(1-t^{2})^{1/2}}}}
\Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}}

Error
ArcSin[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E2 Arccos z = z 1 d t ( 1 - t 2 ) 1 / 2 multivalued-inverse-cosine 𝑧 superscript subscript 𝑧 1 𝑡 superscript 1 superscript 𝑡 2 1 2 {\displaystyle{\displaystyle\operatorname{Arccos}z=\int_{z}^{1}\frac{\mathrm{d% }t}{(1-t^{2})^{1/2}}}}
\Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}}

Error
ArcCos[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, z, 1}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E3 Arctan z = 0 z d t 1 + t 2 multivalued-inverse-tangent 𝑧 superscript subscript 0 𝑧 𝑡 1 superscript 𝑡 2 {\displaystyle{\displaystyle\operatorname{Arctan}z=\int_{0}^{z}\frac{\mathrm{d% }t}{1+t^{2}}}}
\Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}}

Error
ArcTan[z] == Integrate[Divide[1,1 + (t)^(2)], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 1]
4.23.E4 Arccsc z = Arcsin ( 1 / z ) multivalued-inverse-cosecant 𝑧 multivalued-inverse-sine 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arccsc}z=\operatorname{Arcsin}\left(% 1/z\right)}}
\Acsc@@{z} = \Asin@{1/z}

Error
ArcCsc[z] == ArcSin[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E5 Arcsec z = Arccos ( 1 / z ) multivalued-inverse-secant 𝑧 multivalued-inverse-cosine 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arcsec}z=\operatorname{Arccos}\left(% 1/z\right)}}
\Asec@@{z} = \Acos@{1/z}

Error
ArcSec[z] == ArcCos[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E6 Arccot z = Arctan ( 1 / z ) multivalued-inverse-cotangent 𝑧 multivalued-inverse-tangent 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arccot}z=\operatorname{Arctan}\left(% 1/z\right)}}
\Acot@@{z} = \Atan@{1/z}

Error
ArcCot[z] == ArcTan[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E7 arccsc z = arcsin ( 1 / z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{arccsc}z=\operatorname{arcsin}\left(% 1/z\right)}}
\acsc@@{z} = \asin@{1/z}

arccsc(z) = arcsin(1/z)
ArcCsc[z] == ArcSin[1/z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E8 arcsec z = arccos ( 1 / z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{arcsec}z=\operatorname{arccos}\left(% 1/z\right)}}
\asec@@{z} = \acos@{1/z}

arcsec(z) = arccos(1/z)
ArcSec[z] == ArcCos[1/z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E9 arccot z = arctan ( 1 / z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}z=\operatorname{arctan}\left(% 1/z\right)}}
\acot@@{z} = \atan@{1/z}

arccot(z) = arctan(1/z)
ArcCot[z] == ArcTan[1/z]
Failure Successful
Failed [2 / 7]
Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

Successful [Tested: 1]
4.23.E10 arcsin ( - z ) = - arcsin z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arcsin}\left(-z\right)=-% \operatorname{arcsin}z}}
\asin@{-z} = -\asin@@{z}

arcsin(- z) = - arcsin(z)
ArcSin[- z] == - ArcSin[z]
Successful Successful - Successful [Tested: 7]
4.23.E11 arccos ( - z ) = π - arccos z 𝑧 𝜋 𝑧 {\displaystyle{\displaystyle\operatorname{arccos}\left(-z\right)=\pi-% \operatorname{arccos}z}}
\acos@{-z} = \pi-\acos@@{z}

arccos(- z) = Pi - arccos(z)
ArcCos[- z] == Pi - ArcCos[z]
Successful Successful - Successful [Tested: 7]
4.23.E12 arctan ( - z ) = - arctan z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arctan}\left(-z\right)=-% \operatorname{arctan}z}}
\atan@{-z} = -\atan@@{z}

arctan(- z) = - arctan(z)
ArcTan[- z] == - ArcTan[z]
Successful Successful - Successful [Tested: 1]
4.23.E13 arccsc ( - z ) = - arccsc z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arccsc}\left(-z\right)=-% \operatorname{arccsc}z}}
\acsc@{-z} = -\acsc@@{z}

arccsc(- z) = - arccsc(z)
ArcCsc[- z] == - ArcCsc[z]
Successful Successful - Successful [Tested: 7]
4.23.E14 arcsec ( - z ) = π - arcsec z 𝑧 𝜋 𝑧 {\displaystyle{\displaystyle\operatorname{arcsec}\left(-z\right)=\pi-% \operatorname{arcsec}z}}
\asec@{-z} = \pi-\asec@@{z}

arcsec(- z) = Pi - arcsec(z)
ArcSec[- z] == Pi - ArcSec[z]
Successful Successful - Successful [Tested: 7]
4.23.E15 arccot ( - z ) = - arccot z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}\left(-z\right)=-% \operatorname{arccot}z}}
\acot@{-z} = -\acot@@{z}

arccot(- z) = - arccot(z)
ArcCot[- z] == - ArcCot[z]
Failure Successful Skip - No test values generated Successful [Tested: 1]
4.23.E16 arccos z = 1 2 π - arcsin z 𝑧 1 2 𝜋 𝑧 {\displaystyle{\displaystyle\operatorname{arccos}z=\tfrac{1}{2}\pi-% \operatorname{arcsin}z}}
\acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z}

arccos(z) = (1)/(2)*Pi - arcsin(z)
ArcCos[z] == Divide[1,2]*Pi - ArcSin[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E17 arcsec z = 1 2 π - arccsc z 𝑧 1 2 𝜋 𝑧 {\displaystyle{\displaystyle\operatorname{arcsec}z=\tfrac{1}{2}\pi-% \operatorname{arccsc}z}}
\asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z}

arcsec(z) = (1)/(2)*Pi - arccsc(z)
ArcSec[z] == Divide[1,2]*Pi - ArcCsc[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E18 arccot z = + 1 2 π - arctan z 𝑧 1 2 𝜋 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}z=+\tfrac{1}{2}\pi-% \operatorname{arctan}z}}
\acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z}

arccot(z) = +(1)/(2)*Pi - arctan(z)
ArcCot[z] == +Divide[1,2]*Pi - ArcTan[z]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 1]
4.23.E18 arccot z = - 1 2 π - arctan z 𝑧 1 2 𝜋 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}z=-\tfrac{1}{2}\pi-% \operatorname{arctan}z}}
\acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z}

arccot(z) = -(1)/(2)*Pi - arctan(z)
ArcCot[z] == -Divide[1,2]*Pi - ArcTan[z]
Failure Failure
Failed [7 / 7]
Result: 3.141592654+0.*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

... skip entries to safe data
Failed [1 / 1]
Result: 3.141592653589793
Test Values: {Rule[z, Rational[1, 2]]}

4.23.E19 arcsin z = - i ln ( ( 1 - z 2 ) 1 / 2 + i z ) 𝑧 𝑖 superscript 1 superscript 𝑧 2 1 2 𝑖 𝑧 {\displaystyle{\displaystyle\operatorname{arcsin}z=-i\ln\left((1-z^{2})^{1/2}+% iz\right)}}
\asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz}

arcsin(z) = - I*ln((1 - (z)^(2))^(1/2)+ I*z)
ArcSin[z] == - I*Log[(1 - (z)^(2))^(1/2)+ I*z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E20 arcsin x = 1 2 π + i ln ( ( x 2 - 1 ) 1 / 2 + x ) 𝑥 1 2 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arcsin}x=\tfrac{1}{2}\pi+i\ln\left((% x^{2}-1)^{1/2}+x\right)}}
\asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x}

arcsin(x) = (1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcSin[x] == Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [2 / 3]
Result: 0.-1.924847300*I
Test Values: {x = 1.5, x = 3/2}

Result: 0.-2.633915794*I
Test Values: {x = 2, x = 3/2}

Failed [1 / 1]
Result: Complex[0.0, -1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]}

4.23.E20 arcsin x = 1 2 π - i ln ( ( x 2 - 1 ) 1 / 2 + x ) 𝑥 1 2 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arcsin}x=\tfrac{1}{2}\pi-i\ln\left((% x^{2}-1)^{1/2}+x\right)}}
\asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x}

arcsin(x) = (1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcSin[x] == Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [1 / 3]
Result: -2.094395102+.1347500000e-10*I
Test Values: {x = .5, x = 3/2}

Successful [Tested: 1]
4.23.E21 arcsin x = - 1 2 π + i ln ( ( x 2 - 1 ) 1 / 2 - x ) 𝑥 1 2 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arcsin}x=-\tfrac{1}{2}\pi+i\ln\left(% (x^{2}-1)^{1/2}-x\right)}}
\asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x}

arcsin(x) = -(1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)- x)
ArcSin[x] == -Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [3 / 3]
Result: 6.283185308+.7e-9*I
Test Values: {x = 1.5, x = -2}

Result: 4.188790205-.1347500000e-10*I
Test Values: {x = .5, x = -2}

Result: 6.283185308+.2e-8*I
Test Values: {x = 2, x = -2}

Successful [Tested: 1]
4.23.E21 arcsin x = - 1 2 π - i ln ( ( x 2 - 1 ) 1 / 2 - x ) 𝑥 1 2 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arcsin}x=-\tfrac{1}{2}\pi-i\ln\left(% (x^{2}-1)^{1/2}-x\right)}}
\asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x}

arcsin(x) = -(1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)- x)
ArcSin[x] == -Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [2 / 3]
Result: 0.-1.924847301*I
Test Values: {x = 1.5, x = -2}

Result: 0.-2.633915796*I
Test Values: {x = 2, x = -2}

Failed [1 / 1]
Result: Complex[0.0, 2.633915793849633]
Test Values: {Rule[x, -2]}

4.23.E22 arccos z = 1 2 π + i ln ( ( 1 - z 2 ) 1 / 2 + i z ) 𝑧 1 2 𝜋 𝑖 superscript 1 superscript 𝑧 2 1 2 𝑖 𝑧 {\displaystyle{\displaystyle\operatorname{arccos}z=\tfrac{1}{2}\pi+i\ln\left((% 1-z^{2})^{1/2}+iz\right)}}
\acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz}

arccos(z) = (1)/(2)*Pi + I*ln((1 - (z)^(2))^(1/2)+ I*z)
ArcCos[z] == Divide[1,2]*Pi + I*Log[(1 - (z)^(2))^(1/2)+ I*z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E23 arccos z = - 2 i ln ( ( 1 + z 2 ) 1 / 2 + i ( 1 - z 2 ) 1 / 2 ) 𝑧 2 𝑖 superscript 1 𝑧 2 1 2 𝑖 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\operatorname{arccos}z=-2i\ln\left(\left(\frac{1+z% }{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}\right)}}
\acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}}

arccos(z) = - 2*I*ln(((1 + z)/(2))^(1/2)+ I*((1 - z)/(2))^(1/2))
ArcCos[z] == - 2*I*Log[(Divide[1 + z,2])^(1/2)+ I*(Divide[1 - z,2])^(1/2)]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.23.E24 arccos x = - i ln ( ( x 2 - 1 ) 1 / 2 + x ) 𝑥 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccos}x=-i\ln\left((x^{2}-1)^{1/2}+% x\right)}}
\acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x}

arccos(x) = - I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcCos[x] == - I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [2 / 3]
Result: 1.924847300*I
Test Values: {x = 1.5, x = 3/2}

Result: 2.633915794*I
Test Values: {x = 2, x = 3/2}

Failed [1 / 1]
Result: Complex[0.0, 1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]}

4.23.E24 arccos x = + i ln ( ( x 2 - 1 ) 1 / 2 + x ) 𝑥 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccos}x=+i\ln\left((x^{2}-1)^{1/2}+% x\right)}}
\acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x}

arccos(x) = + I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcCos[x] == + I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [1 / 3]
Result: 2.094395102-.1347500000e-10*I
Test Values: {x = .5, x = 3/2}

Successful [Tested: 1]
4.23.E25 arccos x = π - i ln ( ( x 2 - 1 ) 1 / 2 - x ) 𝑥 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccos}x=\pi-i\ln\left((x^{2}-1)^{1/% 2}-x\right)}}
\acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x}

arccos(x) = Pi - I*ln(((x)^(2)- 1)^(1/2)- x)
ArcCos[x] == Pi - I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [3 / 3]
Result: -6.283185308-.7e-9*I
Test Values: {x = 1.5, x = -2}

Result: -4.188790205+.1347500000e-10*I
Test Values: {x = .5, x = -2}

Result: -6.283185308-.2e-8*I
Test Values: {x = 2, x = -2}

Successful [Tested: 1]
4.23.E25 arccos x = π + i ln ( ( x 2 - 1 ) 1 / 2 - x ) 𝑥 𝜋 𝑖 superscript superscript 𝑥 2 1 1 2 𝑥 {\displaystyle{\displaystyle\operatorname{arccos}x=\pi+i\ln\left((x^{2}-1)^{1/% 2}-x\right)}}
\acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x}

arccos(x) = Pi + I*ln(((x)^(2)- 1)^(1/2)- x)
ArcCos[x] == Pi + I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [2 / 3]
Result: 0.+1.924847301*I
Test Values: {x = 1.5, x = -2}

Result: 0.+2.633915796*I
Test Values: {x = 2, x = -2}

Failed [1 / 1]
Result: Complex[0.0, -2.633915793849633]
Test Values: {Rule[x, -2]}

4.23.E26 arctan z = i 2 ln ( i + z i - z ) 𝑧 𝑖 2 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\operatorname{arctan}z=\frac{i}{2}\ln\left(\frac{i% +z}{i-z}\right)}}
\atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}}

arctan(z) = (I)/(2)*ln((I + z)/(I - z))
ArcTan[z] == Divide[I,2]*Log[Divide[I + z,I - z]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.23.E27 arctan ( i y ) = + 1 2 π + i 2 ln ( y + 1 y - 1 ) 𝑖 𝑦 1 2 𝜋 𝑖 2 𝑦 1 𝑦 1 {\displaystyle{\displaystyle\operatorname{arctan}\left(iy\right)=+\frac{1}{2}% \pi+\frac{i}{2}\ln\left(\frac{y+1}{y-1}\right)}}
\atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}

arctan(I*y) = +(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))
ArcTan[I*y] == +Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]
Failure Failure
Failed [2 / 6]
Result: -3.141592654-.2e-9*I
Test Values: {y = -1.5, y = -3/2}

Result: -3.141592654+.2e-9*I
Test Values: {y = -2, y = -3/2}

Failed [1 / 1]
Result: Complex[-3.141592653589793, -1.1102230246251565*^-16]
Test Values: {Rule[y, Rational[-3, 2]]}

4.23.E27 arctan ( i y ) = - 1 2 π + i 2 ln ( y + 1 y - 1 ) 𝑖 𝑦 1 2 𝜋 𝑖 2 𝑦 1 𝑦 1 {\displaystyle{\displaystyle\operatorname{arctan}\left(iy\right)=-\frac{1}{2}% \pi+\frac{i}{2}\ln\left(\frac{y+1}{y-1}\right)}}
\atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}

arctan(I*y) = -(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))
ArcTan[I*y] == -Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]
Failure Failure
Failed [4 / 6]
Result: 3.141592654+.2e-9*I
Test Values: {y = 1.5, y = -3/2}

Result: 3.141592654+.2e-9*I
Test Values: {y = -.5, y = -3/2}

Result: 3.141592654-.2e-9*I
Test Values: {y = .5, y = -3/2}

Result: 3.141592654-.2e-9*I
Test Values: {y = 2, y = -3/2}

Successful [Tested: 1]
4.23.E28 z = sin w 𝑧 𝑤 {\displaystyle{\displaystyle z=\sin w}}
z = \sin@@{w}

z = sin(w)
z == Sin[w]
Failure Failure
Failed [70 / 70]
Result: .70450695e-2+.1624035369*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.358980334+.5284289409*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.3589803345-1.203621867*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.725005738-.8375964631*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.007045069484300837, 0.16240353677712993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.3589803343001376, 0.5284289405615687]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E29 z = cos w 𝑧 𝑤 {\displaystyle{\displaystyle z=\cos w}}
z = \cos@@{w}

z = cos(w)
z == Cos[w]
Failure Failure
Failed [70 / 70]
Result: .1354823851+.8969495503*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.230543019+1.262974954*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.2305430189-.4690758537*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.596568423-.1030504497*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.13548238472721352, 0.8969495502290324]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.230543019057225, 1.2629749540134712]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E30 z = tan w 𝑧 𝑤 {\displaystyle{\displaystyle z=\tan w}}
z = \tan@@{w}

z = tan(w)
z == Tan[w]
Failure Failure
Failed [70 / 70]
Result: .1520945236-.3500402975*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.213930880+.159851065e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.2139308804-1.716065702*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.579956284-1.350040298*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.1520945235384168, -0.3500402971922752]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.2139308802460218, 0.015985106592163567]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E31 w = Arcsin z 𝑤 multivalued-inverse-sine 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arcsin}z}}
w = \Asin@@{z}

Error
w == ArcSin[z]
Missing Macro Error Failure -
Failed [70 / 70]
Result: Complex[0.0806272403869902, -0.15847894846240845]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.2407598364931787, -0.3314429455293106]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E31 Arcsin z = ( - 1 ) k arcsin z + k π multivalued-inverse-sine 𝑧 superscript 1 𝑘 𝑧 𝑘 𝜋 {\displaystyle{\displaystyle\operatorname{Arcsin}z=(-1)^{k}\operatorname{% arcsin}z+k\pi}}
\Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi

Error
ArcSin[z] == (- 1)^(k)* ArcSin[z]+ k*Pi
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-1.5707963267948961, 1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.23.E32 w = Arccos z 𝑤 multivalued-inverse-cosine 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arccos}z}}
w = \Acos@@{z}

Error
w == ArcCos[z]
Missing Macro Error Failure -
Failed [70 / 70]
Result: Complex[0.08062724038699065, 1.1584789484624083]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.0795053557191978, 1.3314429455293104]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E32 Arccos z = + arccos z + 2 k π multivalued-inverse-cosine 𝑧 𝑧 2 𝑘 𝜋 {\displaystyle{\displaystyle\operatorname{Arccos}z=+\operatorname{arccos}z+2k% \pi}}
\Acos@@{z} = +\acos@@{z}+2k\pi

Error
ArcCos[z] == + ArcCos[z]+ 2*k*Pi
Missing Macro Error Failure -
Failed [21 / 21]
Result: -6.283185307179586
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -12.566370614359172
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.23.E32 Arccos z = - arccos z + 2 k π multivalued-inverse-cosine 𝑧 𝑧 2 𝑘 𝜋 {\displaystyle{\displaystyle\operatorname{Arccos}z=-\operatorname{arccos}z+2k% \pi}}
\Acos@@{z} = -\acos@@{z}+2k\pi

Error
ArcCos[z] == - ArcCos[z]+ 2*k*Pi
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-4.71238898038469, -1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-10.995574287564276, -1.3169578969248168]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.23.E33 w = Arctan z 𝑤 multivalued-inverse-tangent 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arctan}z}}
w = \Atan@@{z}

Error
w == ArcTan[z]
Missing Macro Error Failure -
Failed [10 / 10]
Result: Complex[0.4023777947836326, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]}

Result: Complex[-0.9636476090008059, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]}

... skip entries to safe data
4.23.E33 Arctan z = arctan z + k π multivalued-inverse-tangent 𝑧 𝑧 𝑘 𝜋 {\displaystyle{\displaystyle\operatorname{Arctan}z=\operatorname{arctan}z+k\pi}}
\Atan@@{z} = \atan@@{z}+k\pi

Error
ArcTan[z] == ArcTan[z]+ k*Pi
Missing Macro Error Failure -
Failed [3 / 3]
Result: -3.141592653589793
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]}

Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]}

... skip entries to safe data
4.23.E34 arcsin z = arcsin β + i sign ( y ) ln ( α + ( α 2 - 1 ) 1 / 2 ) 𝑧 𝛽 imaginary-unit sign 𝑦 𝛼 superscript superscript 𝛼 2 1 1 2 {\displaystyle{\displaystyle\operatorname{arcsin}z=\operatorname{arcsin}\beta+% \mathrm{i}\operatorname{sign}\left(y\right)\ln\left(\alpha+(\alpha^{2}-1)^{1/2% }\right)}}
\asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}

arcsin(x + y*I) = arcsin((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+ I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))
ArcSin[x + y*I] == ArcSin[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]+ I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
4.23.E35 arccos z = arccos β - i sign ( y ) ln ( α + ( α 2 - 1 ) 1 / 2 ) 𝑧 𝛽 imaginary-unit sign 𝑦 𝛼 superscript superscript 𝛼 2 1 1 2 {\displaystyle{\displaystyle\operatorname{arccos}z=\operatorname{arccos}\beta-% \mathrm{i}\operatorname{sign}\left(y\right)\ln\left(\alpha+(\alpha^{2}-1)^{1/2% }\right)}}
\acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}

arccos(x + y*I) = arccos((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))- I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))
ArcCos[x + y*I] == ArcCos[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]- I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
4.23.E36 arctan z = 1 2 arctan ( 2 x 1 - x 2 - y 2 ) + 1 4 i ln ( x 2 + ( y + 1 ) 2 x 2 + ( y - 1 ) 2 ) 𝑧 1 2 2 𝑥 1 superscript 𝑥 2 superscript 𝑦 2 1 4 𝑖 superscript 𝑥 2 superscript 𝑦 1 2 superscript 𝑥 2 superscript 𝑦 1 2 {\displaystyle{\displaystyle\operatorname{arctan}z=\tfrac{1}{2}\operatorname{% arctan}\left(\frac{2x}{1-x^{2}-y^{2}}\right)+\tfrac{1}{4}i\ln\left(\frac{x^{2}% +(y+1)^{2}}{x^{2}+(y-1)^{2}}\right)}}
\atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}}

arctan(x + y*I) = (1)/(2)*arctan((2*x)/(1 - (x)^(2)- (y)^(2)))+(1)/(4)*I*ln(((x)^(2)+(y + 1)^(2))/((x)^(2)+(y - 1)^(2)))
ArcTan[x + y*I] == Divide[1,2]*ArcTan[Divide[2*x,1 - (x)^(2)- (y)^(2)]]+Divide[1,4]*I*Log[Divide[(x)^(2)+(y + 1)^(2),(x)^(2)+(y - 1)^(2)]]
Failure Failure
Failed [16 / 18]
Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = -1.5}

Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = 1.5}

Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = -.5}

Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = .5}

... skip entries to safe data
Failed [16 / 18]
Result: Complex[1.5707963267948968, 1.1102230246251565*^-16]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[1.5707963267948968, -1.6653345369377348*^-16]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
4.23.E39 gd ( x ) = 0 x sech t d t Gudermannian 𝑥 superscript subscript 0 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle\operatorname{gd}\left(x\right)=\int_{0}^{x}% \operatorname{sech}t\mathrm{d}t}}
\Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arctan(sinh(x)) = int(sech(t), t = 0..x)
Gudermannian[x] == Integrate[Sech[t], {t, 0, x}, GenerateConditions->None]
Successful Aborted - Successful [Tested: 3]
4.23.E40 gd ( x ) = 2 arctan ( e x ) - 1 2 π Gudermannian 𝑥 2 superscript 𝑒 𝑥 1 2 𝜋 {\displaystyle{\displaystyle\operatorname{gd}\left(x\right)=2\operatorname{% arctan}\left(e^{x}\right)-\tfrac{1}{2}\pi\\ }}
\Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arctan(sinh(x)) = 2*arctan(exp(x))-(1)/(2)*Pi
Gudermannian[x] == 2*ArcTan[Exp[x]]-Divide[1,2]*Pi
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 2 arctan ( e x ) - 1 2 π = arcsin ( tanh x ) 2 superscript 𝑒 𝑥 1 2 𝜋 𝑥 {\displaystyle{\displaystyle 2\operatorname{arctan}\left(e^{x}\right)-\tfrac{1% }{2}\pi\\ =\operatorname{arcsin}\left(\tanh x\right)}}
2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
2*arctan(exp(x))-(1)/(2)*Pi = arcsin(tanh(x))
2*ArcTan[Exp[x]]-Divide[1,2]*Pi == ArcSin[Tanh[x]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arcsin ( tanh x ) = arccsc ( coth x ) 𝑥 hyperbolic-cotangent 𝑥 {\displaystyle{\displaystyle\operatorname{arcsin}\left(\tanh x\right)=% \operatorname{arccsc}\left(\coth x\right)\\ }}
\asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arcsin(tanh(x)) = arccsc(coth(x))
ArcSin[Tanh[x]] == ArcCsc[Coth[x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arccsc ( coth x ) = arccos ( sech x ) hyperbolic-cotangent 𝑥 𝑥 {\displaystyle{\displaystyle\operatorname{arccsc}\left(\coth x\right)\\ =\operatorname{arccos}\left(\operatorname{sech}x\right)}}
\acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arccsc(coth(x)) = arccos(sech(x))
ArcCsc[Coth[x]] == ArcCos[Sech[x]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arccos ( sech x ) = arcsec ( cosh x ) 𝑥 𝑥 {\displaystyle{\displaystyle\operatorname{arccos}\left(\operatorname{sech}x% \right)=\operatorname{arcsec}\left(\cosh x\right)\\ }}
\acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arccos(sech(x)) = arcsec(cosh(x))
ArcCos[Sech[x]] == ArcSec[Cosh[x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arcsec ( cosh x ) = arctan ( sinh x ) 𝑥 𝑥 {\displaystyle{\displaystyle\operatorname{arcsec}\left(\cosh x\right)\\ =\operatorname{arctan}\left(\sinh x\right)}}
\asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arcsec(cosh(x)) = arctan(sinh(x))
ArcSec[Cosh[x]] == ArcTan[Sinh[x]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arctan ( sinh x ) = arccot ( csch x ) 𝑥 𝑥 {\displaystyle{\displaystyle\operatorname{arctan}\left(\sinh x\right)=% \operatorname{arccot}\left(\operatorname{csch}x\right)}}
\atan@{\sinh@@{x}} = \acot@{\csch@@{x}}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arctan(sinh(x)) = arccot(csch(x))
ArcTan[Sinh[x]] == ArcCot[Csch[x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.23.E41 gd - 1 ( x ) = 0 x sec t d t inverse-Gudermannian 𝑥 superscript subscript 0 𝑥 𝑡 𝑡 {\displaystyle{\displaystyle{\operatorname{gd}^{-1}}\left(x\right)=\int_{0}^{x% }\sec t\mathrm{d}t}}
\aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arctanh(sin(x)) = int(sec(t), t = 0..x)
InverseGudermannian[x] == Integrate[Sec[t], {t, 0, x}, GenerateConditions->None]
Failure Aborted Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 gd - 1 ( x ) = ln tan ( 1 2 x + 1 4 π ) inverse-Gudermannian 𝑥 1 2 𝑥 1 4 𝜋 {\displaystyle{\displaystyle{\operatorname{gd}^{-1}}\left(x\right)=\ln\tan% \left(\tfrac{1}{2}x+\tfrac{1}{4}\pi\right)}}
\aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arctanh(sin(x)) = ln(tan((1)/(2)*x +(1)/(4)*Pi))
InverseGudermannian[x] == Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 ln tan ( 1 2 x + 1 4 π ) = ln ( sec x + tan x ) 1 2 𝑥 1 4 𝜋 𝑥 𝑥 {\displaystyle{\displaystyle\ln\tan\left(\tfrac{1}{2}x+\tfrac{1}{4}\pi\right)=% \ln\left(\sec x+\tan x\right)}}
\ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
ln(tan((1)/(2)*x +(1)/(4)*Pi)) = ln(sec(x)+ tan(x))
Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] == Log[Sec[x]+ Tan[x]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 2]
4.23.E42 ln ( sec x + tan x ) = arcsinh ( tan x ) 𝑥 𝑥 hyperbolic-inverse-sine 𝑥 {\displaystyle{\displaystyle\ln\left(\sec x+\tan x\right)=\operatorname{% arcsinh}\left(\tan x\right)}}
\ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
ln(sec(x)+ tan(x)) = arcsinh(tan(x))
Log[Sec[x]+ Tan[x]] == ArcSinh[Tan[x]]
Failure Failure Successful [Tested: 2]
Failed [1 / 3]
Result: Complex[3.046904887125347, 3.141592653589793]
Test Values: {Rule[x, 2]}

4.23.E42 arcsinh ( tan x ) = arccsch ( cot x ) hyperbolic-inverse-sine 𝑥 hyperbolic-inverse-cosecant 𝑥 {\displaystyle{\displaystyle\operatorname{arcsinh}\left(\tan x\right)=% \operatorname{arccsch}\left(\cot x\right)}}
\asinh@{\tan@@{x}} = \acsch@{\cot@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arcsinh(tan(x)) = arccsch(cot(x))
ArcSinh[Tan[x]] == ArcCsch[Cot[x]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 arccsch ( cot x ) = arccosh ( sec x ) hyperbolic-inverse-cosecant 𝑥 hyperbolic-inverse-cosine 𝑥 {\displaystyle{\displaystyle\operatorname{arccsch}\left(\cot x\right)=% \operatorname{arccosh}\left(\sec x\right)}}
\acsch@{\cot@@{x}} = \acosh@{\sec@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arccsch(cot(x)) = arccosh(sec(x))
ArcCsch[Cot[x]] == ArcCosh[Sec[x]]
Failure Failure Successful [Tested: 2]
Failed [1 / 3]
Result: Complex[-3.046904887125347, -3.141592653589793]
Test Values: {Rule[x, 2]}

4.23.E42 arccosh ( sec x ) = arcsech ( cos x ) hyperbolic-inverse-cosine 𝑥 hyperbolic-inverse-secant 𝑥 {\displaystyle{\displaystyle\operatorname{arccosh}\left(\sec x\right)=% \operatorname{arcsech}\left(\cos x\right)}}
\acosh@{\sec@@{x}} = \asech@{\cos@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arccosh(sec(x)) = arcsech(cos(x))
ArcCosh[Sec[x]] == ArcSech[Cos[x]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 arcsech ( cos x ) = arctanh ( sin x ) hyperbolic-inverse-secant 𝑥 hyperbolic-inverse-tangent 𝑥 {\displaystyle{\displaystyle\operatorname{arcsech}\left(\cos x\right)=% \operatorname{arctanh}\left(\sin x\right)}}
\asech@{\cos@@{x}} = \atanh@{\sin@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arcsech(cos(x)) = arctanh(sin(x))
ArcSech[Cos[x]] == ArcTanh[Sin[x]]
Failure Failure Successful [Tested: 2]
Failed [1 / 3]
Result: Complex[0.0, 3.141592653589793]
Test Values: {Rule[x, 2]}

4.23.E42 arctanh ( sin x ) = arccoth ( csc x ) hyperbolic-inverse-tangent 𝑥 hyperbolic-inverse-cotangent 𝑥 {\displaystyle{\displaystyle\operatorname{arctanh}\left(\sin x\right)=% \operatorname{arccoth}\left(\csc x\right)}}
\atanh@{\sin@@{x}} = \acoth@{\csc@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arctanh(sin(x)) = arccoth(csc(x))
ArcTanh[Sin[x]] == ArcCoth[Csc[x]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]